Skip to main content

Advertisement

Log in

The structural, electronic, and optical properties of hydrofluorinated germanene (GeH1-xFx): a first-principles study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structural, electronic, and optical properties of hydrofluorinated germanene have been studied with different occupancy ratios of fluorine and hydrogen. The hybridization of H-1 s and Ge-4p orbitals in hydrogenated germanene and F-2p and Ge-4p orbitals in fluorinated germanene plays a significant role in creating an energy bandgap. The binding energy and phonon calculations confirm the stability of hydrofluorinated germanene decreases with the increase of the F to H ratio. The value of the energy bandgap decreased by increasing the ratio of F and H. The optical properties have been studied in the energy range of 0–25 eV. Six essential parameters such as energy bandgap (Eg), binding energy (Eb), dielectric constant ε(0), refractive index n(0), plasmon energy (ћωp), and heat capacity (Cp) have been calculated for different occupancies of H and F in hydrofluorinated germanene for the first time. The calculated values of structural parameters agree well with the reported values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availibility of data and material

Author’s can provide data whenever it is required.

Code availability

Not Applicable.

References

  1. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. PNAS 102:10451–10453

    Article  CAS  PubMed  Google Scholar 

  2. Yu J, Liu G, Sumant AV, Goyal V, Balandin AA (2012) Graphene-on-diamond devices with increased current-carrying capacity: carbon sp2-on-sp3 technology. Nano Lett. 12:1603–1608

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Y, Tan Y, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438:201–204

    Article  CAS  PubMed  Google Scholar 

  4. Takeda K, Shiraishi K (1994) Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys Rev B 50:14916–14922

    Article  CAS  Google Scholar 

  5. Cahangirov S, Topsakal M, Aktu E, Ciraci S (2009) Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102(1–4):236804

    Article  CAS  PubMed  Google Scholar 

  6. Houssa M, Pourtois G, Afanas VV, Stesmans A (2011) Electronic properties of hydrogenated silicene and germanene. Appl Phys Lett 97(1–3):112106

    Google Scholar 

  7. Lebegue S, Eriksson O (2009) Electronic structure of two-dimensional crystals from ab initio theory. Phys Rev B 79(1–4):115409

    Article  Google Scholar 

  8. Pang Q, Zhang C, Li L, Fu Z, Wei X (2014) Song Y. Adsorption of alkali metal atoms on germanene: A first-principles studyAppl Surf Sci 314:15–20

    CAS  Google Scholar 

  9. Rubio-pereda P, Takeuchi N (2015) Van der Waals molecular interactions in the organic functionalization of graphane, silicane, and germanane with alkene and alkyne molecules: a DFT-D2 study. J Phys Chem C 119:27995–28004

    Article  CAS  Google Scholar 

  10. Mortazavi B, Dianat A, Cuniberti G, Rabczuk T (2016) Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation. Electrochimica Acta 213:865–870

    Article  CAS  Google Scholar 

  11. Pang Q, Zhang Y, Zhang J, Xu K (2011) Electronic and magnetic properties of pristine and chemically functionalized germanene nanoribbons. Nanoscale 3:4330–4338

    Article  CAS  PubMed  Google Scholar 

  12. Kurpas M, Junior PEF, Gmitra M, Fabian J (2019) Spin-orbit coupling in elemental two-dimensional materials. Phys Rev B 100(1–9):125422

    Article  CAS  Google Scholar 

  13. Houssa M, Scalise E, Sankaran K, Pourtois G, Afanas VV (2011) Electronic properties of silicene: insights from frst-principles modeling. Appl Phys Lett 98(1-3):223107

    Article  Google Scholar 

  14. Voon LCLY, Sandberg E, Aga RS, Farajian AA (2010) Hydrogen compounds of group-IV nanosheets. Appl Phys Lett 97(1–3):163114

    Article  Google Scholar 

  15. Takeda K, Shiraishi K (1989) Electronic structure of Si-skeleton materials. Phys Rev B 39:28–37

    Article  Google Scholar 

  16. Bianco E, Butler S, Jiang S, Restrepo OD, Windl W, Goldberger JE (2013) Stability and exfoliation of germanane: a germanium graphane analogue. ACS Nano 7:4414–4421

    Article  CAS  PubMed  Google Scholar 

  17. Yao Q, Zhang L, Kabanov NS, Rudenko AN, Arjmand T, Soleimani HR, Klavsyuk AL, Zandvliet W (2018) Bandgap opening in hydrogenated germanene. Appl Phys Lett 112:171607

    Article  Google Scholar 

  18. Wang XQ, Li HD, Wang JT (2012) Induced ferromagnetism in one-side semihydrogenated silicene and germanene. Phys Chem Chem Phys 14:3031–3036

    Article  CAS  PubMed  Google Scholar 

  19. Liu J, Yu G, Shen X, Zhang H, Li H, Huang X, Chen W (2017) The structures, stabilities, electronic and magnetic properties of fully and partially hydrogenated germanene nanoribbons: A first-principles investigation. Physica E 87:27–36

    Article  Google Scholar 

  20. Xiao P, Fan X, Liu L (2014) Tuning the electronic properties of half- and full-hydrogenated germanene by chlorination and hydroxylation: A first principles study. Comp Mater Sci 92:244–252

    Article  CAS  Google Scholar 

  21. Singh R (2018) Spin-orbit coupling in graphene, silicene and germanene: dependence on the configuration of full hydrogenation and fluorination. Bull Mater Sci 41:158

    Article  Google Scholar 

  22. Nagarajan V, Chandiramouli R (2017) Investigation of electronic properties and spin-orbit coupling effects on passivated stanene nanosheet: A firstprinciples study. Superlattice Microst 107:118–126

    Article  CAS  Google Scholar 

  23. Shu H, Li Y, Wang S, Wang J (2015) Quasi-particle energies and optical excitations of hydrogenated and fluorinated germanene. Phys Chem Chem Phys 17:4542–4550

    Article  CAS  PubMed  Google Scholar 

  24. Trivedi S, Srivastava A, Kurchania R (2014) Silicene and germanene: a first principle study of electronic structure and effect of hydrogenation-passivation. J Comp Theo Nano Sci 11:1–8

    Google Scholar 

  25. Leenaerts O, Peelaers H, Hernandez-Nieves AD, Partoens B, Peeters FM (2010) First-principles investigation of graphene fuoride and graphane. Phys Rev B 82:195436

    Article  Google Scholar 

  26. Santosh R, Anita S, Kumar V (2020) Structural, stability, electronic, optical and thermodynamic properties of hydrogenated germanene using first principle calculations. Mater Sci & Eng B 259:114584

    Article  CAS  Google Scholar 

  27. Santosh R, Kumar V (2019) Structural, electronic, optical, and thermodynamic properties of hydrochlorinated Janus graphene: a first-principle study. J Mol Mod 25(1-10):296

    Article  CAS  Google Scholar 

  28. Santosh R, Kumar V (2019) The effect of pressure on the electronic and optical properties of hydrogenated graphene: a first-principles study. J Comp Elect 18:770–778

    Article  CAS  Google Scholar 

  29. Santosh R, Kumar V (2020) A first-principles study of the stability and structural, optical, and thermodynamic properties of hydrogenated silicene. J Comp Elect 19:516–528

    Article  CAS  Google Scholar 

  30. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clarck SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys and Cond Mat 14:2717

    Article  CAS  Google Scholar 

  31. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  32. Vanderbilt D (1990) Soft self-consistent pseudo potentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895

    Article  CAS  Google Scholar 

  33. Fischer TH, Almlof J (1992) General methods for geometry and wave function optimization. J Phys Chem 96:9768–9774

    Article  CAS  Google Scholar 

  34. Refson K, Clark SJ, Tulip PR (2006) Variational density-functional perturbation theory for dielectrics and lattice dynamics. Phys Rev B 73:155114

    Article  Google Scholar 

  35. Lee JH, Koon GKW, Shin DW, Fedorov VE, Choi J, Yoo J, Ozyilmaz B (2013) Property control of graphene by employing “semi-ionic” liquid fluorination. Adv Funct Mater 23:3329

    Article  CAS  Google Scholar 

  36. Wang Y, Lee WC, Manga KK, Ang PK, Lu J, Liu YP, Lim CT, Loh KP (2012) Fluorinated graphene for promoting neuro-induction of stem cells. Adv Mater 24:4285

    Article  CAS  PubMed  Google Scholar 

  37. Birch F (1978) Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. J Geophys Res 83:1257–1268

    Article  CAS  Google Scholar 

  38. Sofo JO, Chaudhari AS, Barber GD (2007) Graphane: a two dimensional hydrocarbon. Phys Rev B 75:153401

    Article  Google Scholar 

  39. Parlinski K, Kawazoe Y (2000) Ab initio study of phonons and structural stabilities of the perovskite-type MgSiO3. Eur Phys J B 16:49–58

    Article  CAS  Google Scholar 

  40. Savin A, Jepsen O, Flad J, Andersen OK, Preuss H, Schnering HGV (1992) Electron localization in solid-state structures of the elements: the diamond structure. Angew Chem Int Ed Engl 31:2

    Article  Google Scholar 

  41. Santhi Bhushan B, Shahzad Khan M, Srivastava A, Shahid Khan M (2016) First principle analysis of (10-boranylanthracene-9-yl) borane-based molecular single-electron transistor for high-speed low-power electronics. IEEE Transactions on Electron Devices 63:1232–1238

    Article  Google Scholar 

  42. Momida H, Hamada T, Takagi Y, Yamamoto T, Uda T, Ohno T (2007) Dielectric constants of amorphous hafnium aluminates: first-principles study. Phys Rev B 75:195105

    Article  Google Scholar 

  43. Kronig RL (1926) On the theory of dispersion of X-rays. J Opt Soc Amer 12:547–557

    Article  CAS  Google Scholar 

  44. Reddy RR, Ahammed YN, Gopal KR, Raghuram DV (1998) Optical electronegativity and refractive index of materials. Opt Mater 10:95–100

    Article  CAS  Google Scholar 

  45. Marinopoulos AG, Reining L, Rubio A, Olevano V (2004) Ab initio study of the optical absorption and wave-vector-dependent dielectric response of graphite. Phys Rev B 69:245419

    Article  Google Scholar 

  46. Baroni S, Gironcoli SD, Corso AD, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562

    Article  CAS  Google Scholar 

  47. Huang LF, Zeng Z (2013) Lattice dynamics and disorder-induced contraction in functionalized graphene. J Appl Phys 113:083524

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Prof. Rajiv Shekhar, Director of IIT(ISM), Dhanbad, for his continuous encouragement throughout the work.

Funding

There is no funding from any other sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kumar.

Ethics declarations

Conflict of interest

Authors do not have any conflict to any one while preparing manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Santosh, R., Sinha, A. et al. The structural, electronic, and optical properties of hydrofluorinated germanene (GeH1-xFx): a first-principles study. J Mol Model 27, 123 (2021). https://doi.org/10.1007/s00894-021-04741-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04741-0

Keywords

Navigation