Skip to main content
Log in

Shape transition and coalescence of Au islands on Ag (110) by molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have used molecular dynamics simulations based on many body semi-empirical potentials described by the embedded atom method, to analyze and understand the diffusion and coalescence phenomena of Au-clusters during the heteroepitaxial growth on Ag (110) surface. Temperature ranging from 300 to 700 K were considered. In this study, we examined the heterogeneous system Aun/Ag(110), where n is the number of atoms in each cluster/island (with n = 15, ….35). Our results show that the clusters diffuse on the Ag (110) surface via different diffusion processes, namely, the exchange mechanism and the simple jump, which generate a 2D to 3D transition. Formation and adsorption energies of clusters with different sizes have been computed using static simulations. The dynamic study of coalescence for two islands of system Au15; Au0 − 9/Ag(110) at different temperatures makes it possible to deduce the detail of cluster shape and the influence of its temperature on the stability of the system and its growth during this evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. S. Granneman, E. Petfalski, and D. Tollervey, “A cluster of ribosome synthesis factors regulate open,” vol. 30, no. 19, pp. 4006–4019, 2011. https://doi.org/10.1038/emboj.2011.256

  2. Y. Xiang, X. Wu, D. Liu, X. Jiang, and W. Chu, “Formation of rectangularly shaped Pd/Au bimetallic nanorods: evidence for competing growth of the Pd shell between the { 110 } and { 100 } side facets of Au nanorods,” pp. 2–6, 2006

  3. Kellogg GL (1994) Field ion microscope studies of single-atom surface diffusion and cluster nucleation on metal surfaces. Surf. Sci. Rep. 21(1–2):1–88. https://doi.org/10.1016/0167-5729(94)90007-8

    Article  CAS  Google Scholar 

  4. Venables JA, Harding JH (2000) Nucleation and growth of supported metal clusters at defect sites on oxide and halide (001) surfaces. J. Cryst. Growth 211(1):27–33. https://doi.org/10.1016/S0022-0248(99)00837-4

    Article  CAS  Google Scholar 

  5. Henry CR (2000) Catalytic activity of supported nanometer-sized metal clusters. Appl. Surf. Sci. 164(1–4):252–259. https://doi.org/10.1016/S0169-4332(00)00344-5

    Article  CAS  Google Scholar 

  6. M. Shen et al., “Accelerated coarsening of Ag adatom islands on Ag (111) due to trace amounts of S: mass-transport mediated by Ag – S complexes vol. 094701, no. May 2012, 2009. https://doi.org/10.1063/1.3078033

  7. K. B. Gylfason et al., “Process considerations for layer-by-layer 3D patterning of silicon, using ion implantation, silicon deposition, and selective silicon etching” vol. 05, no. 2012, pp. 3–7, 2015. https://doi.org/10.1116/1.4756947

  8. H. J. Kim et al., “On the formation mechanism of epitaxial Ge islands on partially relaxed SiGe buffer layers,” vol. 2257, no. 2004, 2015. https://doi.org/10.1116/1.1775188

  9. T. Kitajima, B. Liu, S. R. Leone, T. Kitajima, B. Liu, and S. R. Leone, “Two-dimensional periodic alignment of self-assembled Ge islands on patterned Si (001) surfaces ” vol. 497, no. 001, pp. 2000–2003, 2003. https://doi.org/10.1063/1.1434307

  10. Hill H (2009) Fixing teacher professional development. Phi Delta Kappan 90:470–476. https://doi.org/10.1177/0964663912467814

    Article  Google Scholar 

  11. N. Motta, P. D. Szkutnik, M. Tomellini, and A. Sgarlata, “Role of patterning in islands nucleation on semiconductor surfaces,” vol. 7, pp. 1046–1072, 2006. https://doi.org/10.1016/j.crhy.2006.10.013

  12. El Azrak H et al (2019) Investigation of fcc and hcp island nucleated during homoepitaxial growth of copper by molecular dynamics simulation. Superlattice. Microst. 127:118–122. https://doi.org/10.1016/j.spmi.2017.12.056

    Article  CAS  Google Scholar 

  13. Hassani A et al (2019) Superlattices and microstructures statistical investigations of the film-substrate interface during aluminum deposition on Ni (111) by molecular dynamics simulation. Superlattice. Microst. 127:80–85. https://doi.org/10.1016/j.spmi.2018.03.008

    Article  CAS  Google Scholar 

  14. Kherbouche EF, Annou R (2015) Behavior of Cu and Ni clusters landing at grazing incidence on Ni(001) and Cu(001) surfaces: molecular dynamics simulation. Comput. Mater. Sci. 110:353–358. https://doi.org/10.1016/j.commatsci.2015.07.039

    Article  CAS  Google Scholar 

  15. Nita F, Mastail C, Abadias G (2016) Three-dimensional kinetic Monte Carlo simulations of cubic transition metal nitride thin film growth. Phys. Rev. B 93:1–13. https://doi.org/10.1103/PhysRevB.93.064107

    Article  CAS  Google Scholar 

  16. Restrepo OA, Mousseau N (2017) Study of point defects diffusion in nickel using kinetic activation-relaxation technique Acta Materialia. Acta Mater. 144(2018):679–690. https://doi.org/10.1016/j.actamat.2017.11.021

    Article  CAS  Google Scholar 

  17. Marinica MC, Willaime F, Mousseau N (2011) Energy landscape of small clusters of self-interstitial dumbbells in iron. Phys. Rev. B - Condens. Matter Mater. Phys. 83:1–14. https://doi.org/10.1103/PhysRevB.83.094119

    Article  CAS  Google Scholar 

  18. Fu TY, Tsong TT (2001) Structure and diffusion mechanism of Ir and Rh tetramers on Ir (001) surfaces. Surf. Sci. 482–485:1249–1254. https://doi.org/10.1016/S0039-6028(01)00906-2

    Article  Google Scholar 

  19. Han Y, Stoldt CR, Thiel PA, Evans JW (2016) Ab initio thermodynamics and kinetics for coalescence of two-dimensional nanoislands and nanopits on metal (100) surfaces. J. Phys. Chem. C 120(38):21617–21630. https://doi.org/10.1021/acs.jpcc.6b07328

    Article  CAS  Google Scholar 

  20. Yang W, Zeman M, Ade H, Nemanich RJ (2003) Attractive migration and coalescence: a significant process in the coarsening of TiSi 2 islands on the Si (111) surface. Phys. Rev. Lett. 90(April):4–7. https://doi.org/10.1103/PhysRevLett.90.136102

    Article  CAS  Google Scholar 

  21. Van Siclen CD (1995) Single jump mechanisms for large cluster diffusion on metal surfaces. Phys. Rev. Lett. 75(8):1574–1577. https://doi.org/10.1103/PhysRevLett.75.1574

    Article  PubMed  Google Scholar 

  22. Uberuaga BP, Martı E (2015) Mobility and coalescence of stacking fault tetrahedra in Cu. Sci. Rep. 5(V):1–5. https://doi.org/10.1038/srep09084

    Article  CAS  Google Scholar 

  23. Stoldt CR et al (2009) Smoluchowski ripening of Ag islands on Ag (100). Chem. Phys. (100):111, 5157. https://doi.org/10.1063/1.479770

  24. Dardouri M, Hassani A, Hasnaoui A, Arbaoui A, Boughaleb Y, Sbiaai K (2019) Kinetic Monte Carlo simulations of coverage effect on Ag and Au monolayers growth on Cu (110). J. Cryst. Growth 522(June):139–150. https://doi.org/10.1016/j.jcrysgro.2019.06.024

    Article  CAS  Google Scholar 

  25. Dardouri M, Sbiaai K, Hassani A, Hasnaoui A, Boughaleb Y (2019) Silver monolayer formation on Cu (110) by kinetic Monte Carlo. Eur. Phys. J. Plus 134:1–10. https://doi.org/10.1140/epjp/i2019-12503-8

    Article  CAS  Google Scholar 

  26. R. Gomer, “Diffusion of adsorbates on metal surfaces,” Reports on Progress in Physics, vol. 53, no. October 1989, pp. 917–1002, 1990. http://iopscience.iop.org/0034-4885/53/7/002

  27. A. M. Shikin, D. V Vyalikh, Y. S. Dedkov, G. V Prudnikova, and V. K. Adamchuk, “Extended energy range of Ag quantum-well states in Ag (111)/Au (111)/W (110),” Phys. Rev. B,vol. 62, no. 4, pp. 2303–2306, 2000

  28. Fu TY, Hwang YJ, Tsong TT (2003) Structure and diffusion of Pd clusters on the W(110) surface. Appl. Surf. Sci. 219(1–2):143–148. https://doi.org/10.1016/S0169-4332(03)00596-8

    Article  CAS  Google Scholar 

  29. Wu Y et al (2012) Enhancement of Ag cluster mobility on Ag surfaces by chloridation. Chem. Phys. vol. 184705. https://doi.org/10.1063/1.4759266

  30. Sbiaai K et al (2012) Diffusion of Ag dimer on Cu (110) by dissociation-reassociation and concerted jump processes. Int. Conf. Transparent Opt. Networks 110:1–3. https://doi.org/10.1109/ICTON.2012.6253824

    Article  Google Scholar 

  31. Elkoraychy E, Sbiaai K, Mazroui M, Ferrando R, Boughaleb Y (2017) Heterodiffusion of Ag adatoms on imperfect Au (110) surfaces. Chem. Phys. Lett. 669:150–155. https://doi.org/10.1016/j.cplett.2016.12.031

    Article  CAS  Google Scholar 

  32. Sbiaai K, Boughaleb Y, Mazroui M, Hajjaji A, Kara A (2013) Energy barriers for diffusion on heterogeneous stepped metal surfaces: Ag/Cu(110). Thin Solid Films 548:331–335. https://doi.org/10.1016/j.tsf.2013.09.064

    Article  CAS  Google Scholar 

  33. Poteau R, Heully JL, Spiegelmann F (1997) Structure, stability, and vibrational properties of small silver cluster. Zeitschrift fur Phys. D-Atoms Mol. Clust. 40(1):479–482. https://doi.org/10.1007/s004600050257

    Article  CAS  Google Scholar 

  34. Wang R, Fichthorn KA (1995) Kinetics of intermixing in Au/Ag(110) heteroepitaxy: a molecular-dynamics study. Phys. Rev. B 51(3):1957–1960. https://doi.org/10.1103/PhysRevB.51.1957

    Article  CAS  Google Scholar 

  35. Haftel MI, Rosen M, Franklin T, Hettermann M (1994) Molecular dynamics observations of interdiffusion and Stranski-Krastanov growth in the early film deposition of Au on Ag(110). Physical Review Lett 72:12

    Article  Google Scholar 

  36. Haftel MI, Rosen M (1995) Molecular-dynamics description of early film deposition of Au on Ag(110). Phys. Rev 51(7):8. https://doi.org/10.1103/PhysRevB.51.4426

    Article  Google Scholar 

  37. Yang Y et al (2013) Controlled growth of Ag/au bimetallic nanorods through kinetics control. Chem. Mater. 25(1):34–41. https://doi.org/10.1021/cm302928z

    Article  CAS  Google Scholar 

  38. Esplandiu MJ, Schneeweiss MA, Kolb DM (1999) An in situ scanning tunneling microscopy study of Ag electrodeposition on Au (111). Phys. Chem. Chem. Phys. 1(111):4847–4854. https://doi.org/10.1039/A906140A

    Article  CAS  Google Scholar 

  39. Fichthorn KA, Scheffler M (2000) Island nucleation in thin-film epitaxy: a first-principles investigation. Phys. Rev. Lett. 84(23):5371–5374. https://doi.org/10.1103/PhysRevLett.84.5371

    Article  CAS  PubMed  Google Scholar 

  40. Park C (1988) Growth of Ag, Au and Pd on Ru(OOO1) and CO chemisorption. Surf. Sci 203:395–411. https://doi.org/10.1016/0039-6028(88)90090-8

    Article  CAS  Google Scholar 

  41. Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12):6443–6453. https://doi.org/10.1103/PhysRevB.29.6443

    Article  CAS  Google Scholar 

  42. Evans JW, Thiel PA, Bartelt MC (2006) Morphological evolution during epitaxial thin film growth: formation of 2D islands and 3D mounds. Surf. Sci. Rep. 61(1–2):1–128. https://doi.org/10.1016/j.surfrep.2005.08.004

    Article  CAS  Google Scholar 

  43. M. Bon, N. Ahmad, R. Erni, and D. Passerone, “Reliability of two embedded atom models for the description of Ag @ Au nanoalloys,” Phys, J Chem, vol. 064105, no. April, 2019. https://doi.org/10.1063/1.5107495

  44. Mottet C, Ferrando R, Hontinfinde F, Levi AC (1998) Simulation of the submonolayer homoepitaxial clusters growth on Ag(110). Surf. Sci. 417(1–4):220–237. https://doi.org/10.1007/s100530050500

    Article  CAS  Google Scholar 

  45. Ndongmouo UT, Hontinfinde F (2004) Diffusion and growth on fcc(110) metal surfaces: a computational study. Surf. Sci. 571(1–3):89–101. https://doi.org/10.1016/j.susc.2004.08.010

    Article  CAS  Google Scholar 

  46. Kyuno K, Ehrlich G (2000) Cluster diffusion and dissociation in the kinetics of layer growth: an atomic view. Phys. Rev. Lett 84:3. https://doi.org/10.1103/PhysRevLett.84.2658

    Article  Google Scholar 

  47. Liu F, Hu W, Deng H, Luo W, Xiao S, Yang J (2009) Nuclear instruments and methods in physics research B energetics and self-diffusion behavior of Zr atomic clusters on a Zr (0001) surface. Nucl. Inst. Methods Phys. Res. B 267(18):3267–3270. https://doi.org/10.1016/j.nimb.2009.06.055

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Eddiai or K. Sbiaai.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eddiai, F., Dardouri, M., Hassani, A. et al. Shape transition and coalescence of Au islands on Ag (110) by molecular dynamics simulation. J Mol Model 27, 120 (2021). https://doi.org/10.1007/s00894-021-04734-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04734-z

Keywords

Navigation