Molecular design of energetic tetrazine-triazole derivatives

Abstract

Nitrogen-rich compounds are promising candidates for preparing high energetic density materials (HEDMs) and show the potential in the application of propellants, explosives, and pyrotechnics. Two kinds of typical nitrogen-rich compounds, such as tetrazine and triazole, have attracted the attentions in recent years owing to their high densities, good thermal stabilities, and excellent energetic performances. In this work, four series of innovative energetic compounds based on the conjugates of tetrazine and triazole bearing various substituents (–NH2, –NO2, and –NHNO2) were designed. The optimized structures, crystal densities, heats of formation (HOFs) in gas phase and in condensed phase, detonation properties, bond dissociation energies (BDEs), and impact sensitivity (h50) of these compounds were studied systematically via density functional theory (DFT) method. The detonation velocities of four series of compounds are in the range between 7.03 and 8.59 km s−1 and their detonation pressures are in the range between 20.6 and 33.1 GPa. Results indicated that the linkage of –N=N– bond contributed significantly to HOFs and energy density of the energetic molecules, and 1,2,3-triazole showed better performances than 1,2,4-triazole slightly. As for the same series compounds with different substituents, the compounds with –NHNO2 possessed the highest HOFs (such as A6, B6, C6, D6). In terms of the energetic properties (D and P), four compounds (A7, B7, C7, and D7) exhibited the comparable performance with the widely used hexa-hydro-1,3,5-trinitro-1,3,5-triazine (RDX) and in the meanwhile displayed superior thermal stability and sensitivity to RDX, which indicated their potential application in the insensitive energetic materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Yes.

References

  1. 1.

    Badgujar DM, Talawar MB, Zarko VE et al (2019) Recent advances in safe synthesis of energetic materials: an overview. Combustion Explos Shock Waves 55(3):245–257

    Article  Google Scholar 

  2. 2.

    Tan Y, Yang Z, Wang H et al (2019) High energy explosive with low sensitivity: a new energetic cocrystal based on CL-20 and 1,4-DNI. Cryst Growth Des 19(8)

  3. 3.

    Feng XQ, Cao DL, Cui JL (2016) Synthesis and thermal decomposition mechanism of the energetic compound 3,5-Dinitro-4-nitroxypyrazole. J Energetic Mater 34(3):288–296

    CAS  Article  Google Scholar 

  4. 4.

    Wang YL, Zhao FQ, Ji YP et al (2012) Synthesis and thermal behaviors of 4-amino-3,5-dinitro-1H-pyrazole. J Anal Appl Pyrolysis 98(NOV):231–235

    CAS  Article  Google Scholar 

  5. 5.

    Liao LQ, Yan QL, Zheng Y et al (2011) Thermal decomposition mechanism of particulate core-shell KClO3-HMX composite energetic material. Indian J Eng Mater Sci 18(5):393–398

    CAS  Google Scholar 

  6. 6.

    Chang K, Zuo YF, Zhou JH (2006) Study on thermal behaviour of energetic material HMX-RDX. Chin J Synth Chem 14(1):94–96

    CAS  Google Scholar 

  7. 7.

    Isbell RA, Brewster MQ (1998) Optical properties of energetic materials: RDX, HMX, AP, NC/NG and HTPB. Propellants Explos Pyrotech 23(4):218–224

    CAS  Article  Google Scholar 

  8. 8.

    He P, Han J, Wu J et al (2019) Computational insight into a new family of functionalized tetrazole-N-oxides as high-energy density materials. New J Chem 43(42)

  9. 9.

    Qiu L, Gong X, Zheng J et al (2009) Theoretical studies on polynitro-l,3-bishomopentaprismanes as potential high energy density compounds. J Hazard Mater 166(2–3):931–938

    CAS  Article  Google Scholar 

  10. 10.

    Lai WP, Lian P, Yu T et al (2011) Design and density functional theoretical study of three novel pyrazine-based high-energy density compounds. Comput Theor Chem 963(1):221–226

    CAS  Article  Google Scholar 

  11. 11.

    He P, Zhang JG, Wang K et al (2015) Combination multinitrogen with good oxygen balance: molecule and synthesis design of polynitro-substituted tetrazolotriazine-based energetic compounds. J Organomet Chem 80(11):5643–5651

    CAS  Article  Google Scholar 

  12. 12.

    Klapötke TM, Chapman RD (2015) [Structure and Bonding] || Progress in the area of high energy density materials. (Chapter 190)

  13. 13.

    Sinditskii VP, Egorshev VY, Rudakov GF, et al (2017) High-nitrogen energetic materials of 1,2,4,5-tetrazine family: thermal and combustion behaviors. [Springer Aerospace Technology] Chemical Rocket Propulsion || 2017: 89–125

  14. 14.

    Keshavarz MH, Esmaeilpour K, Oftadeh M, Abadi YH (2015) Assessment of two new nitrogen-rich tetrazine derivatives as high performance and safe energetic compounds. RSC Adv 5(106):87392–87399

    CAS  Article  Google Scholar 

  15. 15.

    Zhang HH, Jia SY, Wang BZ et al (2014) Synthesis and properties of 3, 6-dihydrazine-1, 2, 4, 5-tetrazine and its energetic salts. Huozhayao Xuebao/Chinese J Explos Propellants 37(2):23–26+30

    Google Scholar 

  16. 16.

    Saikia A, Sivabalan R, Polke BG et al (2009) Synthesis and characterization of 3,6-bis( 1 H-1,2,3,4-tetrazol-5-ylamino)-1,2,4,5-tetrazine (BTATz): novel high-nitrogen content insensitive high energy material. J Hazard Mater 170(1):306–313

    CAS  Article  Google Scholar 

  17. 17.

    Jochen K, Stefan L (2002) Synthesis and characterization of 3,3′-azobis(6-amino-1,2,4,5-Tetrazine) DAAT-A new promising nitrogen-rich compound. Propellants, Explosives, Pyrotechnics

  18. 18.

    Chavez DE, Hiskey MA, Naud DL (2004) Tetrazine explosives. Propellants Explos Pyrotech 29(4):209–215

    CAS  Article  Google Scholar 

  19. 19.

    Coburn MD, Buntain GA, Harris BW et al (1990) An improved synthesis of 3,6-diamino-1,2,4,5-tetrazine. I. J Heterocyclic Chem 27(7):1941–1945

    CAS  Article  Google Scholar 

  20. 20.

    Zhang T, Du J, Li Z et al (2019) Alkali metal salts of 3,6-dinitramino-1,2,4,5-tetrazine: promising nitrogen-rich energetic materials. CrystEngComm 21(4):765–772

    CAS  Article  Google Scholar 

  21. 21.

    Chavez DE, Hiskey MA (1999) 1,2,4,5-tetrazine based energetic materials. J Energetic Mater 17(4):357–377

    CAS  Article  Google Scholar 

  22. 22.

    Huo H, Wang BZ, Luo YF et al (2013) Synthesis, characterization and thermal properties of energetic compound 3, 6-dinitroguanidino-1, 2, 4, 5-tetrazine (DNGTz) and its derivatives. J Solid Rocket Technol 36(4):500–505

    CAS  Google Scholar 

  23. 23.

    Li XH, Zhang RZ, Zhang XZ (2011) Theoretical studies on a series of 1,2,3-triazoles derivatives as potential high energy density compounds. Struct Chem 22(3):577–587

    CAS  Article  Google Scholar 

  24. 24.

    Zhang Y, Parrish DA, Shreeve JM (2013) Derivatives of 5-nitro-1,2,3-2H-triazole-high performance energetic materials[J]. J Mater Chem A 1(3):585–593

    CAS  Article  Google Scholar 

  25. 25.

    Huang Y, Gao H, Twamley B et al (2008) Nitroamino triazoles: nitrogen ln ich precursors of stable energetic salts. Ber Dtsch Chem Ges 2008(16):2560–2568

    Google Scholar 

  26. 26.

    Singh G, Prajapati R, Frohlich R (2005) Studies on energetic compounds. J Therm Anal 118(1–3):75–78

    CAS  Google Scholar 

  27. 27.

    Dippold AA, Izsák D, Klapötke TM, Pflüger C (2016) Combining the advantages of tetrazoles and 1,2,3-triazoles: 4,5-bis(tetrazol-5-yl)-1,2,3-triazole,4,5-bis(1-hydroxytetrazol-5-yl)-1,2,3-triazole, and their energetic derivatives. Chem Eur J 22(5):1768–1778

    CAS  Article  Google Scholar 

  28. 28.

    Shlomovich A, Pechersky T, Cohen A et al (2017) Energetic isomers of 1,2,4,5-tetrazine-bis-1,2,4-triazoles with low toxicity. Dalton Trans 46(18):5994–6002

    CAS  Article  Google Scholar 

  29. 29.

    Liu Z, Wu Q, Zhu W et al (2014) DFT study of pressure effects in molecular crystal 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazatetracyclo-[5.5.0.05,903,11]-dodecane. Can J Chem 92(7):616–624

    CAS  Article  Google Scholar 

  30. 30.

    Lin H, Chen PY, Zhu SG et al (2014) Theoretical investigation of pyridine derivatives as high energy materials. J Energetic Mater 32(3):172–183

    CAS  Article  Google Scholar 

  31. 31.

    Xia M, Chu Y, Wang T et al (2016) Computational investigation of the properties of double furazan-based and furoxan-based energetic materials. J Mol Model 22(11):268

    Article  Google Scholar 

  32. 32.

    Jin X, Hu B, Liu Z (2015) Theoretical studies on two novel series of energetic cyclic nitramines. Struct Chem 26(2):401–409

    CAS  Article  Google Scholar 

  33. 33.

    Ghule VD, Sarangapani R, Jadhav PM et al (2012) Quantum-chemical investigation of substituted s-TETRAZINE derivatives as energetic materials[J]. Bull Kor Chem Soc 33(2):564

    CAS  Article  Google Scholar 

  34. 34.

    Yu Z, Bernstein ER (2013) Sensitivity and performance of azole-based energetic materials. J Phys Chem A 117(42)

  35. 35.

    Giunta C (1982) Atkin’s Physical Chemistry 1982 Oxford University Press

  36. 36.

    Politzer P, Murray JS (2011) Some perspectives on estimating detonation properties of C, H, N, O compounds. Cent Eur J Energetic Mater 8(3):209–220

    CAS  Google Scholar 

  37. 37.

    Byrd EFC, Rice BM (2006) Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J Phys Chem A 110(3):1005–1013

    CAS  Article  Google Scholar 

  38. 38.

    Kamlet MJ, Jacobs SJ (2003) Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J Chem Phys 48(1):23–35

    Article  Google Scholar 

  39. 39.

    Politzer P, Martinez J, Murray JS et al (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107(19):2095–2101

    CAS  Article  Google Scholar 

  40. 40.

    Fei T, Du Y, Pang S (2018) Theoretical design and prediction of properties for dinitromethyl, fluorodinitromethyl, and (difluoroamino)dinitromethyl derivatives of triazole and tetrazole[J]. RSC Adv 8(19):10215–10227

    CAS  Article  Google Scholar 

  41. 41.

    Liu H, Fang W, Wang GX et al (2012) Theoretical studies of -NH and -NO substituted dipyridines. J Mol Model 18(10):4639–4647

    CAS  Article  Google Scholar 

  42. 42.

    Zhang X, Gong X (2015) Theoretical study of the stabilities and detonation performance of 5-nitro-3-trinitromethyl-1H-1,2,4-triazole and its derivatives[J]. J Mol Model 21(2):26

    Article  Google Scholar 

  43. 43.

    Bao F, Zhang G, Jin S et al (2018) Theoretical study of the heats of formation, detonation properties, and bond dissociation energies of substituted bis-1,2,4-triazole compounds[J]. J Mol Model 24(4):85

    Article  Google Scholar 

  44. 44.

    Talawar MB, Sivabalan R, Mukundan T et al (2009) Environmentally compatible next generation green energetic materials (GEMs)[J]. J Hazard Mater 161(2–3):589–607

    CAS  Article  Google Scholar 

  45. 45.

    Wu Q, Kou B, Zhang Z et al (2017) The search for new powerful energetic transition metal complexes based on 3,3′-dinitro-5,5′-bis-1,2,4-triazole-1,1′-diolate anion: a DFT study[J]. J Mol Model 23(9):254

    Article  Google Scholar 

  46. 46.

    Chung GS, Schmidt MW, Gordon MS (2000) An ab initio study of potential energy surfaces for N8 isomers. J Phys Chem A 104(23):5647–5650

    CAS  Article  Google Scholar 

Download references

Funding

The project was supported by Beijing Institute of Technology (2018CX10002).

Author information

Affiliations

Authors

Contributions

Li Yi contributed to the conception of the study, performed the experiment and wrote the manuscript; Li Shengfu helped perform the data analyses; Chen Kun and Jin Shaohua contributed significantly to analysis; Chen Kun, Li Yanyue, and Bao Fang helped perform the analysis with constructive discussions.

Corresponding authors

Correspondence to Kun Chen or Fang Bao.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Yes.

Consent for publication

Yes.

Conflict of interest

The authors declare no competing interests.

Code availability: (software application or custom code)

Yes.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 55 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, Y., Jin, S. et al. Molecular design of energetic tetrazine-triazole derivatives. J Mol Model 27, 98 (2021). https://doi.org/10.1007/s00894-021-04714-3

Download citation

Keywords

  • Nitrogen-rich compounds
  • HEDMs
  • Tetrazine
  • Triazole
  • Density functional theory
  • Explosives