Theoretical research about nonmetallic energetic salts with pentazolate anion


Significant progress has been made in the synthesis of nitrogen-rich high-energy salts by pairing pentazolate anion (cyclo-N5) with different cations since cyclo-N5 was synthesized. It is difficult to screen out cyclo-N5 salts with high energy quickly and effectively in experiment, while theoretical research can realize this goal. Herein, nineteen high-energy salts, which were composed of tetrazole cation and cyclo-N5 anion, were designed. And their properties were studied via density functional theory and volume-based thermodynamic methods. The results indicate that most salts have high densities, low sensitivities, and good detonation properties. In particular, salt 14 (ρCalib = 1.802 g/cm3, ΔHf = 1058.4 kJ/mol, D = 9.38 km/s, P = 39.10 GPa, h50 = 44.92 cm) exhibits excellent detonation performance (approximating that of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20)) superior to 1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and lower impact sensitivity than CL-20 or HMX. Hence salt 14 is regarded as promising candidates for high-performance energetic materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Availability of data and material

My manuscript and associated personal data will be shared with Research Square for the delivery of the author dashboard.

Code availability



  1. 1.

    Hunter S, Coster PL, Davidson AJ, Millar DIA, Parker SF, Marshall WG, Smith RI, Morrison CA, Pulham CR (2015) High-pressure experimental and DFT-D structural studies of the energetic material FOX-7. J Phys Chem C 119(5):2322–2334

    CAS  Article  Google Scholar 

  2. 2.

    Liu X, Su Z, Ji W, Chen S, Wei Q, Xie G, Yang X, Gao S (2014) Structure, physicochemical properties, and density functional theory calculation of high-energy-density materials constructed with intermolecular interaction: nitro group charge determines sensitivity. J Phys Chem C 118(41):23487–23498

    CAS  Article  Google Scholar 

  3. 3.

    Nimesh S, Ang HG (2015) 1-(2H-Tetrazolyl)-1,2,4-triazole-5-amine(TzTA) - a thermally stable nitrogen rich energetic material: synthesis, characterization and thermo- chemical analysis. Propell Explos Pyrot 40(3):426–432

    CAS  Article  Google Scholar 

  4. 4.

    Wang R, Xu H, Guo Y, Sa R, Shreeve JM (2010) Bis 3-(5-nitroimino-1,2,4-triazolate) -based energetic salts: synthesis and promising properties of a new family of high-density insensitive materials. J Am Chem Soc 132(34):11904–11905

    CAS  Article  Google Scholar 

  5. 5.

    Yin P, He C, Shreeve JM (2016) Fully C/N-polynitro-functionalized 2,2-biimidazole derivatives as nitrogen- and oxygen-rich energetic salts. Chem-Eur J 22(6):2108–2113

    CAS  Article  Google Scholar 

  6. 6.

    Izsak D, Klapoetke TM, Scharf R, Stierstorfer J (2013) Energetic materials based on the 5-Azido-3-nitro-1,2,4-triazolate anion. Z Anorg Allg Chem 639(10):1746–1755

    CAS  Article  Google Scholar 

  7. 7.

    Zhang C, Sun C, Hu B, Yu C, Lu M (2017) Synthesis and characterization of the pentazolate anion cyclo-N5 in (N5)6(H3O)3(NH4)4Cl. Science 355(6323):374–376

    CAS  Article  Google Scholar 

  8. 8.

    Christe KO (2007) Recent advances in the chemistry of N5+, N5and high-oxygen compounds. Propell Explos Pyrot 32(3):194–204

  9. 9.

    Li ZM, Xie SH, Zhang JG, Feng JL, Wang K, Zhang TL (2012) Two high nitrogen content energetic compounds: 3,6-diguanidino-1,2,4,5-tetrazine and its diperchlorate. J Chem Eng Data 57(3):729–736

    CAS  Article  Google Scholar 

  10. 10.

    Thottempudi V, Gao H, Shreeve JM (2011) Trinitromethyl-substituted 5-nitro- or 3-Azo-1,2,4-triazoles: synthesis, characterization, and energetic properties. J Am Chem Soc 133(16):6464–6471

    CAS  Article  Google Scholar 

  11. 11.

    Zhang X, Zhu W, Wei T, Zhang C, Xiao H (2010) Densities, heats of formation, energetic properties, and thermodynamics of formation of energetic nitrogen-rich salts containing substituted protonated and methylated tetrazole cations: a computational study. J Phys Chem C 114(30):13142–13152

    CAS  Article  Google Scholar 

  12. 12.

    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    CAS  Article  Google Scholar 

  13. 13.

    Glasser L, Jenkins HDB (2011) Volume-based thermodynamics: a prescription for its application and usage in approximation and prediction of thermodynamic data. J Chem Eng Data 56(4):874–880

    CAS  Article  Google Scholar 

  14. 14.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA (2009) Gaussian 09 revision A.1. Gaussian Inc.

  15. 15.

    Shriver DF, Atkins PW (1999) Inorganic chemistry3rd edn. Press, Oxford University

    Google Scholar 

  16. 16.

    Fau S, Wilson KJ, Bartlett RJ (2002) On the stability of N5+N5. J Phys Chem A 106(18):4639–4644

    CAS  Article  Google Scholar 

  17. 17.

    Politzer P, Martinez J, Murray JS, Concha MC (2010) An electrostatic correction for improved crystal density predictions of energetic ionic compounds. Mol Phys 108(10):1391–1396

    CAS  Article  Google Scholar 

  18. 18.

    Wang HR, Zhang C, Hu BC, Ju XH (2020) Theoretical investigation of energetic salts with pentazolate anion. Molecules 25(8)

  19. 19.

    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  Google Scholar 

  20. 20.

    Rice BM, Hare JJ, Byrd EFC (2007) Accurate predictions of crystal densities using quantum mechanical molecular volumes. J Phys Chem A 111(42):10874–10879

    CAS  Article  Google Scholar 

  21. 21.

    Jenkins HDB, Tudela D, Glasser L (2002) Lattice potential energy estimation for complex ionic salts from density measurements. Inorg Chem 41(9):2364–2367

    CAS  Article  Google Scholar 

  22. 22.

    Byrd EFC, Rice BM (2006) Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J Phys Chem A 110(3):1005–1013

    CAS  Article  Google Scholar 

  23. 23.

    Rayne S, Forest K (2010) Estimated gas-phase standard state enthalpies of formation for organic compounds using the Gaussian-4 (G4) and W1BD theoretical methods. J Chem Eng Data 55(11):5359–5364

    CAS  Article  Google Scholar 

  24. 24.

    Kamlet MJ, Jacobs SJ (1968) Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O Explosives. J Chem Phys 48(1):23–35

    CAS  Article  Google Scholar 

  25. 25.

    Keshavarz MH (2013) A new general correlation for predicting impact sensitivity of energetic compounds. Propell Explos Pyrot 38(6):754–760

    CAS  Article  Google Scholar 

  26. 26.

    Accelrys Inc.: Materials Studio, 6.0 V (Accelrys Inc San Diego,CA, 2010)

  27. 27.

    Mayo SL, Olafson BD, Goddard WA (1990) III, DREIDING: a generic force field for molecular simulations. J Phys Chem 94(26):8897–8909

    CAS  Article  Google Scholar 

  28. 28.

    Chang YF, Lu ZY, An LJ, Zhang JP (2012) From molecules to materials: molecular and crystal engineering design of organic optoelectronic functional materials for high carrier mobility. J Phys Chem C 116(1):1195–1199

    CAS  Article  Google Scholar 

  29. 29.

    Christe KO, Wilson WW, Sheehy JA, Boatz JA (2001) N-5(+): a novel homoleptic polynitrogen ion as a high energy density material (vol 38, pg 2004, 1999). Angew Chem Int Edit 40(16):2947–2947

    Article  Google Scholar 

  30. 30.

    Weast RC (1982) CRC handbook of chemistry and physics. Crc Press, Inc

  31. 31.

    Pan Y, Zhu W (2018) Designing and looking for novel cage compounds based on bicyclo-HMX as high energy density compounds. RSC Adv 8(1):44–52

    CAS  Article  Google Scholar 

  32. 32.

    Talawar MB, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, Rao AS (2009) Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater 161(2–3):589–607

    CAS  Article  Google Scholar 

  33. 33.

    Wu Q, Kou B, Hang Z, Zhu W (2017) Comparative theoretical studies of differently bridged nitramino-substituted ditetrazole 2-N-oxides with high detonation performance and an oxygen balance of around zero. J Mol Model 23(6)

  34. 34.

    Rice BM, Hare JJ (2002) A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J Phys Chem A 106(9):1770–1783

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (No. 21975128, 21903044).

Author information




Conceptualization, Bing-Cheng Hu and Xue-Hai Ju; data curation, Hao-Ran Wang and Chong Zhang; formal analysis, Hao-Ran Wang; project administration, Bing-Cheng Hu and Xue-Hai Ju; supervision, Xue-Hai Ju; writing–original draft, Hao-Ran Wang; writing–review and editing, Xue-Hai Ju.

Corresponding authors

Correspondence to Bing-Cheng Hu or Xue-Hai Ju.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information


(DOC 46 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, HR., Zhang, C., Hu, BC. et al. Theoretical research about nonmetallic energetic salts with pentazolate anion. J Mol Model 27, 100 (2021).

Download citation


  • Energetic salts
  • Density functional theory
  • Pentazolate anion
  • Tetrazole cation