Skip to main content
Log in

Quantum chemical study in exploring the role of donor→acceptor interactions in 1,3-bis carbene-stabilized guanidinium cations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Guanidinium species are highly basic and hence mostly exist in cationic state. Because these cations carry electron-deficient centers, they can be stabilized with the help of electron-donating ligands like N-heterocyclic carbenes. A few novel guanidinium cationic species stabilized by electron-donating ligands were designed and quantum chemically evaluated. It was shown that strong hydrogen bonds and tautomerism are the important characteristics of these species. Further, the possibility of donor→acceptor coordination interactions in these species have been explored between the electron-donating carbenes and the central guanidinium unit. The results suggest that the title compounds can be considered as ligand-stabilized guanidinium cations similar to the ligand-stabilized N+ and N3+ centers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Electronic Supporting Information ESI uploaded.

References

  1. Vazdar K, Kunetskiy R, Saame J, Kaupmees K, Leito I, Jahn U (2014) Very strong organosuperbases formed by combining imidazole and guanidine bases: synthesis, structure, and basicity. Angew Chem Int Ed 53(5):1435–1438

    Article  CAS  Google Scholar 

  2. Štrukil V, Lekšić E, Meštrović E, Eckert-Maksić M (2014) The synthesis and structural characterization of peralkylated triguanide superbases. Aust J Chem 67(7):1129–1133

    Article  Google Scholar 

  3. Loh YK, Ángeles Fuentes M, Vasko P, Aldridge S (2018) Successive protonation of an N-heterocyclic imine derived carbonyl: superelectrophilic dication versus masked acylium ion. Angew Chem 130(50):16797–16801

    Article  Google Scholar 

  4. Blondeau P, Segura M, Pérez-Fernández R, de Mendoza J (2007) Molecular recognition of oxoanions based on guanidinium receptors. Chem Soc Rev 36(2):198–210

    Article  CAS  PubMed  Google Scholar 

  5. Schug KA, Lindner W (2005) Noncovalent binding between guanidinium and anionic groups: focus on biological-and synthetic-based arginine/guanidinium interactions with phosph [on] ate and sulf [on] ate residues. Chem Rev 105(1):67–114

    Article  CAS  PubMed  Google Scholar 

  6. Best MD, Tobey SL, Anslyn EV (2003) Abiotic guanidinium containing receptors for anionic species. Coord Chem Rev 240(1–2):3–15

    Article  CAS  Google Scholar 

  7. Hargrove AE, Nieto S, Zhang T, Sessler JL, Anslyn EV (2011) Artificial receptors for the recognition of phosphorylated molecules. Chem Rev 111(11):6603–6782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Young T, Abel R, Kim B, Berne BJ, Friesner RA (2007) Motifs for molecular recognition exploiting hydrophobic enclosure in protein–ligand binding. Proc Natl Acad Sci 104(3):808–813

    Article  CAS  PubMed  Google Scholar 

  9. Kataev EA, Müller C, Kolesnikov GV, Khrustalev VN (2014) Guanidinium-based artificial receptors for binding orthophosphate in aqueous solution. Eur J Org Chem 2014(13):2747–2753

    Article  CAS  Google Scholar 

  10. Rozas I, Kruger PE (2005) Theoretical study of the interaction between the guanidinium cation and chloride and sulfate anions. J Chem Theory Comput 1(5):1055–1062

    Article  CAS  PubMed  Google Scholar 

  11. Campbell RK, White Jr JR, Saulie BA (1996) Metformin: a new oral biguanide. Clin Ther 18(3):360–371

    Article  CAS  PubMed  Google Scholar 

  12. Kathuria D, Bankar AA, Bharatam PV (2018) “What’s in a structure?” The story of biguanides. J Mol Struct 1152:61–78

    Article  CAS  Google Scholar 

  13. De Greef TF, Smulders MM, Wolffs M, Schenning AP, Sijbesma RP, Meijer E (2009) Supramolecular polymerization. Chem Rev 109(11):5687–5754

    Article  PubMed  Google Scholar 

  14. Fathalla M, Lawrence CM, Zhang N, Sessler JL, Jayawickramarajah J (2009) Base-pairing mediated non-covalent polymers. Chem Soc Rev 38(6):1608–1620

    Article  CAS  PubMed  Google Scholar 

  15. de Greef TF, Meijer E (2008) Materials science: supramolecular polymers. Nature 453(7192):171

    Article  PubMed  Google Scholar 

  16. Blight BA, Hunter CA, Leigh DA, McNab H, Thomson PI (2011) An AAAA–DDDD quadruple hydrogen-bond array. Nat Chem 3(3):244–248

    Article  CAS  PubMed  Google Scholar 

  17. Seipp CA, Williams NJ, Bryantsev VS, Custelcean R, Moyer BA (2015) A conformationally persistent pseudo-bicyclic guanidinium for anion coordination as stabilized by dual intramolecular hydrogen bonds. RSC Adv 5(130):107266–107269

    Article  CAS  Google Scholar 

  18. Zhao L, Pan S, Holzmann N, Schwerdtfeger P, Frenking G (2019) Chemical bonding and bonding models of main-group compounds. Chem Rev 119(14):8781–8845

    Article  CAS  PubMed  Google Scholar 

  19. Doddi A, Peters M, Tamm M (2019) N-Heterocyclic carbene adducts of main group elements and their use as ligands in transition metal chemistry. Chem Rev 119(12):6994–7112

    Article  CAS  PubMed  Google Scholar 

  20. Nesterov V, Reiter D, Bag P, Frisch P, Holzner R, Porzelt A, Inoue S (2018) NHCs in main group chemistry. Chem Rev 118(19):9678–9842

    Article  CAS  PubMed  Google Scholar 

  21. Patel N, Sood R, Bharatam PV (2018) NL2+ systems as new-generation phase-transfer catalysts. Chem Rev 118(18):8770–8785

    Article  CAS  PubMed  Google Scholar 

  22. Zhao L, Hermann M, Holzmann N, Frenking G (2017) Dative bonding in main group compounds. Coord Chem Rev 344:163–204

    Article  CAS  Google Scholar 

  23. Hansmann MM, Bertrand G (2016) Transition-metal-like behavior of main group elements: ligand exchange at a phosphinidene. J Am Chem Soc 138(49):15885–15888

    Article  CAS  PubMed  Google Scholar 

  24. Georgiou DC, Stringer BD, Hogan CF, Barnard PJ, Wilson DJ, Holzmann N, Frenking G, Dutton JL (2015) The fate of NHC-stabilized dicarbon. Chem Eur J 21(8):3377–3386

    Article  CAS  PubMed  Google Scholar 

  25. Rivard E (2014) Donor–acceptor chemistry in the main group. Dalton Trans 43(23):8577–8586

    Article  CAS  PubMed  Google Scholar 

  26. Himmel D, Krossing I, Schnepf A (2014) Dative bonds in main-group compounds: a case for fewer arrows! Angew Chem Int Ed 53(2):370–374

    Article  CAS  Google Scholar 

  27. Frenking G (2014) Dative bonds in main-group compounds: a case for more arrows! Angew Chem Int Ed 53(24):6040–6046

    Article  CAS  Google Scholar 

  28. Himmel D, Krossing I, Schnepf A (2014) Dative or not dative? Angew Chem Int Ed 53(24):6047–6048

    Article  CAS  Google Scholar 

  29. Wilson DJ, Dutton JL (2013) Recent advances in the field of main-group mono-and diatomic “allotropes” stabilised by neutral ligands. Chem Eur J 19(41):13626–13637

    Article  CAS  PubMed  Google Scholar 

  30. Wilson DJ, Couchman SA, Dutton JL (2012) Are N-heterocyclic carbenes “better” ligands than phosphines in main group chemistry? A theoretical case study of ligand-stabilized E2 molecules, LEEL (L=NHC, phosphine; E=C, Si, Ge, Sn, Pb, N, P, As, Sb, Bi). Inorg Chem 51(14):7657–7668

    Article  CAS  PubMed  Google Scholar 

  31. Back O, Donnadieu B, von Hopffgarten M, Klein S, Tonner R, Frenking G, Bertrand G (2011) N-Heterocyclic carbenes versus transition metals for stabilizing phosphinyl radicals. Chem Sci 2(5):858–861

    Article  CAS  Google Scholar 

  32. Singh T, Bharatam PV (2019) Donor→acceptor coordination interactions in 1,3-bis (NHC) triazenyl cations: an electronic structure analysis. J Comput Chem 40(25):2207–2215

    CAS  PubMed  Google Scholar 

  33. Bharatam PV, Patel DS, Iqbal P (2005) Pharmacophoric features of biguanide derivatives: an electronic and structural analysis. J Med Chem 48(24):7615–7622

    Article  CAS  PubMed  Google Scholar 

  34. Patel DS, Bharatam PV (2009) Novel N(←L)2 species with two lone pairs on nitrogen: systems isoelectronic to carbodicarbenes. Chem Commun 9:1064–1066

    Article  Google Scholar 

  35. Kozma Á, Gopakumar G, Farès C, Thiel W, Alcarazo M (2013) Synthesis and structure of carbene-stabilized N-centered cations [L2N]+, [L2NR]2+, [LNR3]2+, and [L3N]3+. Chem Eur J 19(11):3542–3546

    Article  CAS  PubMed  Google Scholar 

  36. Parr RG (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  37. Hehre WJ, Radom L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  38. Pople JA, Beveridge DL (1970) Approximate molecular orbital theory. McGraw-Hill Book, New York

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Revision E.01 edn. Gaussian, Inc., Wallingford

    Google Scholar 

  40. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120(1–3):215–241

    Article  CAS  Google Scholar 

  41. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926

    Article  CAS  Google Scholar 

  42. Domingo LR, Chamorro E, Pérez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J Org Chem 73(12):4615–4624

    Article  CAS  PubMed  Google Scholar 

  43. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92(9):5397–5403

    Article  CAS  Google Scholar 

  44. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  PubMed  Google Scholar 

  45. Ziegler T, Rauk A (1979) Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide as. sigma. donors and. pi. acceptors. A theoretical study by the Hartree-Fock-Slater transition-state method. Inorg Chem 18(7):1755–1759

    Article  CAS  Google Scholar 

  46. Morokuma K (1971) Molecular orbital studies of hydrogen bonds. III. C=O···H–O hydrogen bond in H2CO···H2O and H2CO···2H2O. J Chem Phys 55(3):1236–1244

    Article  CAS  Google Scholar 

  47. Mitoraj MP, Michalak A, Ziegler T (2009) A combined charge and energy decomposition scheme for bond analysis. J Chem Theory Comput 5(4):962–975

    Article  CAS  PubMed  Google Scholar 

  48. Mitoraj M, Michalak A (2008) Applications of natural orbitals for chemical valence in a description of bonding in conjugated molecules. J Mol Model 14(8):681–687

    Article  CAS  PubMed  Google Scholar 

  49. Michalak A, Mitoraj M, Ziegler T (2008) Bond orbitals from chemical valence theory. J Phys Chem A 112(9):1933–1939

    Article  CAS  PubMed  Google Scholar 

  50. Mitoraj M, Michalak A (2007) Donor–acceptor properties of ligands from the natural orbitals for chemical valence. Organometallics 26(26):6576–6580

    Article  CAS  Google Scholar 

  51. Mitoraj M, Michalak A (2007) Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes. J Mol Model 13(2):347–355

    Article  CAS  PubMed  Google Scholar 

  52. ADF2012, SCM, Theoretical Chemistry. Vrije Universiteit, Amsterdam, The Netherlands. http://www.scm.com

  53. Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJ, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22(9):931–967

    Article  Google Scholar 

  54. Herrmann WA (2002) N-heterocyclic carbenes: a new concept in organometallic catalysis. Angew Chem Int Ed 41(8):1290–1309

    Article  CAS  Google Scholar 

  55. Peris E (2017) Smart N-heterocyclic carbene ligands in catalysis. Chem Rev 118(19):9988–10031

    Article  PubMed  Google Scholar 

  56. Patel N, Arfeen M, Sood R, Khullar S, Chakraborti AK, Mandal SK, Bharatam PV (2018) Can remote N-heterocyclic carbenes coordinate with main group elements? Synthesis, structure, and quantum chemical analysis of N+-centered complexes. Chem Eur J 24(24):6418–6425

    Article  CAS  PubMed  Google Scholar 

  57. Bharatam PV, Arfeen M, Patel N, Jain P, Bhatia S, Chakraborti AK, Khullar S, Gupta V, Mandal SK (2016) Design, synthesis, and structural analysis of divalent NI compounds and identification of a new electron-donating ligand. Chem Eur J 22(3):1088–1096

    Article  CAS  PubMed  Google Scholar 

  58. Bhatia S, Malkhede YJ, Bharatam PV (2013) Existence of dynamic tautomerism and divalent N (I) character in N-(pyridin-2-yl) thiazol-2-amine. J Comput Chem 34(18):1577–1588

    Article  CAS  PubMed  Google Scholar 

  59. Bhatia S, Bagul C, Kasetti Y, Patel DS, Bharatam PV (2012) Divalent N (I) character in 2-(thiazol-2-yl) guanidine: an electronic structure analysis. J Phys Chem A 116(36):9071–9079

    Article  CAS  PubMed  Google Scholar 

  60. Patel DS, Bharatam PV (2011) Divalent N(I) compounds with two lone pairs on nitrogen. J Phys Chem A 115(26):7645–7655

    Article  CAS  PubMed  Google Scholar 

  61. Patel N, Falke B, Bharatam PV (2018) C→N coordination bonds in (CCC)→N+←(L) complexes. Theor Chem Accounts 137(3):34

    Article  Google Scholar 

  62. Celik MA, Sure R, Klein S, Kinjo R, Bertrand G, Frenking G (2012) Borylene complexes (BH) L2 and nitrogen cation complexes (N+) L2: isoelectronic homologues of carbones CL2. Chem Eur J 18(18):5676–5692

    Article  CAS  PubMed  Google Scholar 

  63. Tonner R, Frenking G (2008) Divalent carbon (0) chemistry, part 1: parent compounds. Chem Eur J 14(11):3260–3272

    Article  CAS  PubMed  Google Scholar 

  64. Bonn M, Hunger J (2021) Between a hydrogen and a covalent bond. Science 371(6525):123–124

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Mr. Wanjari is grateful to National Institute of Pharmaceutical Education and Research (NIPER) S.A.S.-Nagar, India, for research facilities; Dr. Singh is thankful to the Department of Science and Technolgy (DST); and F.A. Sofi is thankful to National Institute of Pharmaceutical Education and Research (NIPER) S.A.S.-Nagar, for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to this manuscript.

Corresponding author

Correspondence to Prasad V. Bharatam.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1318 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanjari, P.J., Singh, T., Sofi, F.A. et al. Quantum chemical study in exploring the role of donor→acceptor interactions in 1,3-bis carbene-stabilized guanidinium cations. J Mol Model 27, 87 (2021). https://doi.org/10.1007/s00894-021-04707-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04707-2

Keywords

Navigation