Skip to main content
Log in

First-principles study of structure, electronic, and magnetic properties of C sites vacancy defects in water adsorbed graphene/MoS2 van der Waals heterostructures

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have studied structure, electronic, and magnetic properties of water adsorbed vdW heterostructure graphene/MoS2 (w-(HS)G/MoS2) and its C sites vacancy defects materials (w-Catoms-vacancy-(HS)G/MoS2) by using a spin polarized density functional theory (DFT) method of calculations within DFT-D2 approach to take in to account of vdW interactions. All the structures are optimized and relaxed by BFGS method using computational tool Quantum ESPRESSO package. By structural analysis, we found that both w-(HS)G/MoS2 and w-Catoms-vacancy-(HS)G/MoS2 are stable materials. The stability and compactness of these materials decrease with an increase in their defects concentrations. From band structure calculations, our findings show that w-(HS)G/MoS2 has a metallic nature, and there is formation of n-type Schottky contact of barrier height 0.42 eV. Also, the left 1C atom vacancy defects in w-(HS)G/MoS2 (L1C-w-(HS)G/MoS2) and center 1C atom vacancy defects in w-(HS)G/MoS2 (C1C-w-(HS)G/MoS2) materials have no band gap for up and down spin electronic states, indicating that they have also a metallic nature. On the other hand, 2C atom vacancy defects in w-(HS)G/MoS2 (2C-w-(HS)G/MoS2) has a small band gap for up spins states and no band gap for down spin electronic states which means that the band structure resembles with half metallic nature. Thus, the endowment of metallic nature decreased with increase in the concentrations of defects in structures. To study the magnetic properties in materials, DOS and PDOS calculations are used, and we found that non-magnetic w-(HS)G/MoS2 material changes to magnetic in all the three different L1C-w-(HS)G/MoS2, C1C-w-(HS)G/MoS2, and 2C-w-(HS)G/MoS2 materials with vacancy. L1C-w-(HS)G/MoS2, C1C-w-(HS)G/MoS2, and 2C-w-(HS)G/MoS2 have magnetic moments of + 0.21 μB/cell, + 0.26 μB/cell, and − 2.00 μB/cell, respectively. The spins of electrons in 2s and 2p orbitals of C atoms give a principal effect of magnetism in w-Catoms-vacancy-(HS)G/MoS2 materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The corresponding author will provide any data required for reproduction.

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  2. Zhang S, Xie M, Li F, Yan Z, Li Y, Kan E et al (2016) Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities. Angew Chem 128(5):1698–1701

    Article  Google Scholar 

  3. Wang H, Feng H, Li J (2014) Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage. Small 10(11):2165–2181

    Article  CAS  Google Scholar 

  4. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7(11):699–712

    Article  CAS  Google Scholar 

  5. Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J et al (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10(8):3209–3215

    Article  CAS  Google Scholar 

  6. Tran TT, Bray K, Ford MJ, Toth M, Aharonovich I (2016) Quantum emission from hexagonal boron nitride monolayers. Nat Nanotechnol 11(1):37–41

    Article  CAS  Google Scholar 

  7. Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113(5):3766–3798

    Article  CAS  Google Scholar 

  8. Mayorov AS, Gorbachev RV, Morozov SV, Britnell L, Jalil R, Ponomarenko LA et al (2011) Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett 11(6):2396–2399

    Article  CAS  Google Scholar 

  9. Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100(1):016602

    Article  CAS  Google Scholar 

  10. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva I et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200

    Article  CAS  Google Scholar 

  11. Castro EV, Novoselov KS, Morozov SV, Peres NMR, Dos Santos JL, Nilsson J, Neto AC (2007) Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys Rev Lett 99(21):216802

    Article  Google Scholar 

  12. Lei JC, Zhang X, Zhou Z (2015) Recent advances in MXene: preparation, properties, and applications. Front Phys 10(3):276–286

    Article  Google Scholar 

  13. Dávila ME, Xian L, Cahangirov S, Rubio A, Le Lay G (2014) Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J Phys 16(9):095002

    Article  Google Scholar 

  14. Balendhran S, Walia S, Nili H, Sriram S, Bhaskaran M (2015) Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11(6):640–652

    Article  CAS  Google Scholar 

  15. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105(13):136805

    Article  Google Scholar 

  16. Zhang Y, Ye J, Matsuhashi Y, Iwasa Y (2012) Ambipolar MoS2 thin flake transistors. Nano Lett 12(3):1136–1140

    Article  CAS  Google Scholar 

  17. Radisavljevic B, Whitwick MB, Kis A (2012) Small-signal amplifier based on single-layer MoS2. Appl Phys Lett 101(4):043103

    Article  Google Scholar 

  18. Fornarini L, Stirpe F, Scrosati B, Razzini G (1981) Electrochemical solar cells with layer-type semiconductor anodes. Performance of n-MoS2 cells. Solar Energy Mater 5(1):107–114

    Article  CAS  Google Scholar 

  19. Hu KH, Hu XG, Wang J, Xu YF, Han CL (2012) Tribological properties of MoS2 with different morphologies in high-density polyethylene. Tribol Lett 47(1):79–90

    Article  CAS  Google Scholar 

  20. Pierucci D, Henck H, Avila J, Balan A, Naylor CH, Patriarche G et al (2016) Band alignment and minigaps in monolayer MoS2-graphene van der Waals heterostructures. Nano Lett 16(7):4054–4061

    Article  CAS  Google Scholar 

  21. Zhou, S. Y., Gweon, G. H., Fedorov, A. V., First, P. D., De Heer, W. A., Lee, D. H.,..& Lanzara, A. (2007). Substrate-induced bandgap opening in epitaxial graphene. Nat Mater, 6(10), 770–775

  22. Chen H, Zhao J, Huang J, Liang Y (2019) Computational understanding of the structural and electronic properties of the GeS–graphene contact. Phys Chem Chem Phys 21(14):7447–7453

    Article  CAS  Google Scholar 

  23. Makarova MV, Akaishi Y, Ikarashi T, Rao KS, Yoshimura S, Saito H (2019) Alternating magnetic force microscopy: effect of Si doping on the temporal performance degradation of amorphous FeCoB magnetic tips. J Magn Magn Mater 471:209–214

    Article  CAS  Google Scholar 

  24. Peng HX, Qin F, Phan MH (2016) Ferromagnetic microwire composites: from sensors to microwave applications. Springer

  25. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864

    Article  Google Scholar 

  26. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Dal Corso A (2009) QUANTUM ESPRESSO: modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21(39):395502

    Article  Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  28. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25(12):1463–1473

    Article  CAS  Google Scholar 

  29. Pfrommer BG, Côté M, Louie SG, Cohen ML (1997) Relaxation of crystals with the quasi-Newton method. J Comput Phys 131(1):233–240

    Article  CAS  Google Scholar 

  30. Marzari N, Vanderbilt D, De Vita A, Payne MC (1999) Thermal contraction and disordering of the Al (110) surface. Phys Rev Lett 82(16):3296

    Article  CAS  Google Scholar 

  31. Martin RM, Martin RM (2004) Electronic structure: basic theory and practical methods. Cambridge university press

  32. Kadantsev ES, Hawrylak P (2012) Electronic structure of a single MoS2 monolayer. Solid State Commun 152(10):909–913

    Article  CAS  Google Scholar 

  33. Hou Z, Wang X, Ikeda T, Terakura K, Oshima M, Kakimoto MA, Miyata S (2012) Interplay between nitrogen dopants and native point defects in graphene. Phys Rev B 85(16):165439

    Article  Google Scholar 

  34. Neupane HK, Adhikari NP (2020) Structure, electronic and magnetic properties of 2D graphene-molybdenum diSulphide (G-MoS2) Heterostructure (HS) with vacancy defects at Mo sites. Comput Condens Matter:e00489

  35. Phuc HV, Hieu NN, Hoi BD, Phuong LT, Nguyen CV (2018) First principle study on the electronic properties and Schottky contact of graphene adsorbed on MoS2 monolayer under applied out-plane strain. Surf Sci 668:23–28

    Article  CAS  Google Scholar 

  36. Liu B, Wu LJ, Zhao YQ, Wang LZ, Cai MQ (2016) First-principles investigation of the Schottky contact for the two-dimensional MoS2 and graphene heterostructure. RSC Adv 6(65):60271–60276

    Article  CAS  Google Scholar 

  37. Chen W, Santos EJ, Zhu W, Kaxiras E, Zhang Z (2013) Tuning the electronic and chemical properties of monolayer MoS2 adsorbed on transition metal substrates. Nano Lett 13(2):509–514

    Article  CAS  Google Scholar 

  38. Hu W, Wang T, Zhang R, Yang J (2016) Effects of interlayer coupling and electric fields on the electronic structures of graphene and MoS2 heterobilayers. J Mater Chem C 4(9):1776–1781

    Article  CAS  Google Scholar 

  39. Kittel C, McEuen P, McEuen P (1996) Introduction to solid state physics, vol 8. Wiley, New York, pp 140–303

    Google Scholar 

  40. Koda DS, Bechstedt F, Marques M, Teles LK (2017) Tuning electronic properties and band alignments of phosphorene combined with MoSe2 and WSe2. J Phys Chem C 121(7):3862–3869

    Article  CAS  Google Scholar 

Download references

Acknowledgments

HKN acknowledges the UGC Nepal Award no. PhD-75/76-S&T-09. NPA acknowledges network project NT-14 of ICTP/OEA and UGC Nepal Grants CRG 073/74 -S&T -01.

Code availability

We used Quantum Espresso which is open-source software for ab initio simulation of solids.

Funding

This study was supported by UGC Nepal and ICTP.

Author information

Authors and Affiliations

Authors

Contributions

HKN carried the calculations, NPA suggested problem, and both the authors analyzed the results.

Corresponding author

Correspondence to Narayan Prasad Adhikari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 833 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neupane, H.K., Adhikari, N.P. First-principles study of structure, electronic, and magnetic properties of C sites vacancy defects in water adsorbed graphene/MoS2 van der Waals heterostructures. J Mol Model 27, 82 (2021). https://doi.org/10.1007/s00894-021-04690-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04690-8

Keywords

Navigation