Skip to main content
Log in

Theoretical study of the mixed π-conjugated bridge effect on the nonlinear optical properties of corannulene derivative

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A new series of corannulene derivatives with two mixed π-conjugated bridge have been theoretically designed and investigated by means of density functional theory. It is found that all molecules exhibit large energy gaps. The holes and electrons analysis show that charge transfer from long-chain connected with NH2 to long-chain connected with NO2. The small transition energy brings corannulene derivatives larger first hyperpolarizabilities. Furthermore, the polarization scan of the hyper-Rayleigh scattering (HRS) intensity indicates that all studied compounds belong to dipolar characteristic. The results indicate that employing two mixed π-conjugated bridge can significantly increase the first hyperpolarizability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nakano M, Fujita H, Takahata M, Yamaguchi K (2002) Theoretical study on second hyperpolarizabilities of phenylacetylene dendrimer: toward an understanding of structure−property relation in NLO responses of fractal antenna dendrimers. J Am Chem Soc 124:9648–9655

    Article  CAS  PubMed  Google Scholar 

  2. Geskin VM, Lambert C, Brédas JL (2003) Origin of high second- and third-order nonlinear optical response in ammonio/borato diphenylpolyene zwitterions: the remarkable role of polarized aromatic groups. J Am Chem Soc 125:15651–15658

    Article  CAS  PubMed  Google Scholar 

  3. Ostroverkhova O, Moemer WE (2004) Organic photorefractives: mechanisms, materials, and applications. Chem Rev 104:3267–3314

    Article  CAS  PubMed  Google Scholar 

  4. Coe BJ (2006) Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups. Acc Chem Res 39:383–393

    Article  CAS  PubMed  Google Scholar 

  5. Desce MB et al (1997) Large quadratic hyperpolarizabilities with donor–acceptor polyenes exhibiting optimum bond length alternation: correlation between structure and hyperpolarizability. Chem Eur J 3:1091–1104

    Article  Google Scholar 

  6. Marder SR, Gorman CB, Meyers F, Perry JW, Bourhill G, Breds JL, Pierce BM (1994) A unified description of linear and nonlinear polarization in organic polymethine dyes. Science 265:632–635

    Article  CAS  PubMed  Google Scholar 

  7. Yang JS, Liau KL, Li CY, Chen MY (2007) Metaconjugation effect on the torsional motion of aminostilbenes in the photoinduced intramolecular charge-transfer state. J Am Chem Soc 129:13183–13192

    Article  CAS  PubMed  Google Scholar 

  8. Xu HL, Li ZR, Wu D, Wang BQ, Li Y, Gu FL, Aoki Y (2007) Structures and large NLO responses of new electrides: li-doped fluorocarbon Chain. J Am Chem Soc 129:2967–2970

    Article  CAS  PubMed  Google Scholar 

  9. Wu HQ, Zhong RL, Sun SL, Xu HL, Su ZM (2014) Alkali metals-substituted adamantanes lead to visible light absorption: large first hyperpolarizability. J Phys Chem C 118:6952–6958

    Article  CAS  Google Scholar 

  10. Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL (2005) The structure and the large nonlinear optical properties of Li@Calix[4]pyrrole. J Am Chem Soc 127:10977–10981

    Article  CAS  PubMed  Google Scholar 

  11. Niu M, Yu G, Yang G, Chen W, Zhao X, Huang X (2013) Doping the alkali atom: an effective strategy to improve the electronic and nonlinear optical properties of the inorganic Al12N12 nanocage. Inorg Chem 53:349–358

    Article  PubMed  Google Scholar 

  12. Torre G, Vaquez P, Agullo-Lopez F, Torres T (2004) Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem Rev 104:3723–3750

    Article  PubMed  Google Scholar 

  13. Tancrez N, Feuvrie C, Ledoux I, Zyss J, Toupet L, Bozec HL, Maury O (2005) Lanthanide complexes for second order nonlinear optics: evidence for the direct contribution of electrons to the quadratic hyperpolarizability. J Am Chem Soc 127:13474–13475

    Article  CAS  PubMed  Google Scholar 

  14. Wang WY, Ma NN, Wang L, Zhu CL, Fang XY, Qiu YQ (2016) Effect of π-conjugate units on the ferrocene-based complexes: switchable second order nonlinear optics controlled by redox stimuli. Dyes Pigments 126:29–37

    Article  CAS  Google Scholar 

  15. Lee SH, Park JR, Jeong MY, Kim HM, Li SJ, Song J, Ham S, Jeon SJ, Cho BR (2006) First hyperpolarizabilities of 1,3,5-Tricyanobenzene derivatives: origin of larger β values for the octupoles than for the dipoles. ChemPhysChem 7:206–212

    Article  CAS  PubMed  Google Scholar 

  16. Schulz M, Tretiak S, Chernyak V, Mukamel S (2000) Size scaling of third-order off-resonant polarizabilities. Electronic Coherence in Organic Oligomers. J Am Chem Soc 122:452–459

    Article  CAS  Google Scholar 

  17. Priyadarshy S, Therien MJ, Beratan DN (1996) Acetylenyl-linked, porphyrin-bridged, donor−acceptor molecules: a theoretical analysis of the molecular first hyperpolarizability in highly conjugated push−pull chromophore structures. J Am Chem Soc 118:1504–1510

    Article  Google Scholar 

  18. Xiao DQ, Bulat FA, Yang WT, Beratan DN (2008) A donor−nanotube paradigm for nonlinear optical materials. Nano Lett 8:2814–2818

    Article  CAS  PubMed  Google Scholar 

  19. Torres M, Semin S, Razdolski I, Xu JL, Elemans JAAW, Rasing T, Rowan AE, Nolte RJM (2015) Extended π-conjugated ruthenium zinc–porphyrin complexes with enhanced nonlinear-optical properties. Chem Commun 51:2855–2858

    Article  Google Scholar 

  20. Klikar M, Poul PL, Růžička A, Pytela O, Barsella A, Dorkenoo KD, Guen FR, Bureš F, Achelle S (2017) Dipolar NLO chromophores bearing diazine rings as π-conjugated linkers. J Org Chem 82:9435–9451

    Article  CAS  PubMed  Google Scholar 

  21. Wang WY, Ma NN, Sun SL, Qiu YQ (2014) Redox control of ferrocene-based complexes with systematically extended π-conjugated connectors: switchable and tailorable second order nonlinear optics. Phys Chem Chem Phys 16:4900–4910

    Article  CAS  PubMed  Google Scholar 

  22. Durand RJ, Gauthier S, Achelle S, Kahlal S, Saillard JY, Barsella A, Wojcik L, Poul NL, Guen FRL (2017) Incorporation of a platinum center in the pi-conjugated core of push–pull chromophores for nonlinear optics (NLO). Dalton Trans 46:3059–3069

    Article  CAS  PubMed  Google Scholar 

  23. Achelle S, Barsella A, Caro B, Guen FRL (2015) Donor–linker–acceptor (D–π–A) diazine chromophores with extended π-conjugated cores: synthesis, photophysical and second order nonlinear optical properties. RSC Adv 5:39218–39227

    Article  CAS  Google Scholar 

  24. Yu GT, Zhao XG, Niu M, Huang XR, Zhang H, Chen W (2013) Constructing a mixed π-conjugated bridge: a simple and effective approach to realize a large first hyperpolarizability in carbon nanotube-based systems. J Mater Chem C 1:3833–3841

    Article  CAS  Google Scholar 

  25. Chen LW, Yu GT, Chen W, Tu CY, Zhao XG, Huang X (2014) Constructing a mixed π-conjugated bridge to effectively enhance the nonlinear optical response in the Möbius cyclacene-based systems. Phys Chem Chem Phys 16:10933–10942

    Article  CAS  PubMed  Google Scholar 

  26. Wu YT, Siegel JS (2006) Aromatic molecular-bowl hydrocarbons: synthetic derivatives, their structures, and physical properties. Chem Rev 106:4843–4867

    Article  CAS  PubMed  Google Scholar 

  27. Mack J, Vogel P, Jones D, Kaval N, Sutton A (2007) The development of corannulene-based blue emitters. Org Biomol Chem 5:2448–2452

    Article  CAS  PubMed  Google Scholar 

  28. Valenti G, Bruno C, Rapino S, Fiorani A, Jackson EA, Scott LT, Paolucci F, Marcaccio M (2010) Intense and tunable electrochemiluminescence of corannulene. J Phys Chem C 114:19467–19472

    Article  CAS  Google Scholar 

  29. Zoppi L, Martin-Samos L, Baldridge KK (2011) Effect of molecular packing on corannulene-based materials electroluminescence. J Am Chem Soc 133:14002–14009

    Article  CAS  PubMed  Google Scholar 

  30. Miyajima D, Tashiro K, Araoka F, Takezoe H, Kim J, Kato K, Takata M, Aida T (2009) Liquid crystalline corannulene responsive to electric field. J Am Chem Soc 131:44–45

    Article  CAS  PubMed  Google Scholar 

  31. Pappo D, Mejuch T, Reany O, Solel E, Gurram M, Keinan E (2009) Diverse functionalization of corannulene: easy access to pentagonal superstructure. Org Lett 11:1063–1066

    Article  CAS  PubMed  Google Scholar 

  32. Klärner FG, Panitzky J, Preda D, Scott LT (2000) Modeling of supramolecular properties of molecular tweezers, clips, and bowls. J Mol Model 6:318–327

    Article  Google Scholar 

  33. Kobryn L, Henry WP, Fronczek FR, Sygula R, Sygula A (2009) Molecular clips and tweezers with corannulene pincers. Tetrahedron Lett 50:7124–7127

    Article  CAS  Google Scholar 

  34. Sygula A, Fronczek FR, Sygula R, Rabideau PW, Olmstead MM (2007) A double concave hydrocarbon buckycatcher. J Am Chem Soc 129:3842–3843

    Article  CAS  PubMed  Google Scholar 

  35. Stuparu MC (2013) Rationally designed polymer hosts of fullerene. Angew Chem Int Ed 52:7786–7790

    Article  CAS  Google Scholar 

  36. Kuvychko IV, Dubceac C, Deng SHM, Wang XB, Granovsky AA, Popov AA, Petrukhina MA, Strauss SH, Boltalina OV (2013) C20H4(C4F8)3: A fluorine-containing annulated corannulene that is a better electron acceptor than C60. Angew Chem Int Ed 52:7505–7508

    Article  CAS  Google Scholar 

  37. Schmidt BM, Topolinski B, Roesch P, Lentz D (2012) Electron-poor N-substituted imide-fused corannulenes. Chem Commun 48:6520–6522

    Article  CAS  Google Scholar 

  38. Schmidt BM, Topolinski B, Yamada M, Higashibayashi S, Shionoya M, Sakurai H, Lentz D (2013) Fluorinated and trifluoromethylated corannulenes. Chem Eur J 19:13872–13880

    Article  CAS  PubMed  Google Scholar 

  39. Lu RQ, Zheng YQ, Zhou YN, Yan XY, Lei T, Shi K, Zhou Y, Pei J, Zoppi L, Baldridge KK, Siegel JS, Cao XY (2014) Corannulene derivatives as non-fullerene acceptors in solution-processed bulk heterojunction solar cells. J Mater Chem A 2:20515–20519

    Article  CAS  Google Scholar 

  40. Lu RQ, Xuan W, Zheng YQ, Zhou YN, Yan XY, Dou JH, Chen R, Pei J, Weng WG, Cao XY (2014) A corannulene-based donor–acceptor polymer for organic field-effect transistors. RSC Adv 4:56749–56755

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JJE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16. Gaussian, Inc., Wallingford CT

    Google Scholar 

  42. Dennington R, Keith TA, Millam JM (2016) GaussView version 6, Semichem Inc., Shawnee Mission KS

  43. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  44. Oudar JL, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys 66:2664–2668

    Article  CAS  Google Scholar 

  45. Oudar JL (1977) Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J Chem Phys 67:446–457

    Article  CAS  Google Scholar 

  46. Datta A, Pati SK (2006) Dipolar interactions and hydrogen bonding in supramolecular aggregates: understanding cooperative phenomena for 1st hyperpolarizability. Chem Soc Rev 35:1305–1323

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to the Fujian University of Technology for providing the computing facility.

Funding

The work was supported by the start-up Foundation of Fujian University of Technology (GY-Z13109), Development Foundation of Fujian University of Technology (GY-Z160127), the Education Department of Fujian Province(GY-Z17105, JAT170393), Science and Technology Major Special Project of Fujian Province (2014HZ0005-1), Industrial Technology joint Innovation Project of Fujian Province (2015-779), and Fujian Province Science and Technology Innovation Leaders (GY-Z17142).

Author information

Authors and Affiliations

Authors

Contributions

Yao-Dong Song performed the theoretical calculation and data analysis. Qian-Ting Wang supervised the project.

Corresponding authors

Correspondence to Yao-Dong Song or Qian-Ting Wang.

Ethics declarations

Consent for publication

We agree to publish in this journal.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, YD., Wang, QT. Theoretical study of the mixed π-conjugated bridge effect on the nonlinear optical properties of corannulene derivative. J Mol Model 27, 66 (2021). https://doi.org/10.1007/s00894-021-04689-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04689-1

Keywords

Navigation