Formation enthalpies and dilute heats of HCP-HCP disordered binary alloys: modified ones of embedded atom method potentials

Abstract

The formation enthalpies and the dilute heats of HCP-HCP disordered binary alloys were evaluated by employing the improved ones of the modified analytic embedded atom method (EAM) potentials for HCP metals. We calculated the formation enthalpies according to the concentration of alloy elements for 36 kinds of HCP-HCP disordered binary alloys by using the modified ones of embedded atom method potentials for HCP metals proposed by Jin et al. (Appl. Phys. A120, 2015, 189), Johnson’s alloy potential model, and Vegard’s law. We derived the formulas to calculate the dilute heats of HCP-HCP binary alloys and evaluated the dilute heats for 56 kinds of HCP-HCP disordered binary alloys. The present results of the formation enthalpies and the dilute heats for HCP-HCP binary alloys are basically consistent with the experimental data, the first principle calculations, and the calculations by Miedema theory. Our results agree with the available experimental results better than the modified analytic EAM calculation results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

All data used are transparent.

References

  1. 1.

    Daw MS, Baskes MI (1983). Phys Rev Lett 50:1285

    CAS  Article  Google Scholar 

  2. 2.

    Daw MS, Baskes MI (1984). Phys Rev B 29:6443

    CAS  Article  Google Scholar 

  3. 3.

    Zhang B, Hu W, Shu X (2003) Theory of Embedded Atom Method and its Application to Materials Science − Atomic Scale Materials Design Theory. Hunan University Publication Press, Changsha

    Google Scholar 

  4. 4.

    Hu W, Shu X, Zhang B (2002). Comput Mater Sci 23:175

    CAS  Article  Google Scholar 

  5. 5.

    Hu W, Zhang B, Huang B, Gao F, Bacon DJ (2001). J Phys Condens Matter 13:1193

    CAS  Article  Google Scholar 

  6. 6.

    Shu X (2001) Study on the Physical Properties, Point Defects and Atomic Diffusion in Intermetallics by a Modified Analytic EAM Model. Hunan University, Changsha, Ph. D. Thesis

    Google Scholar 

  7. 7.

    Jin H, An J, Jong Y (2015). Appl Phys A Mater Sci Process 120:189

    CAS  Article  Google Scholar 

  8. 8.

    Jin H, Pak J, Jong Y (2017). Appl Phys A Mater Sci Process 123:257

    Article  Google Scholar 

  9. 9.

    Jon C, Jin H, Hwang C (2017). Radiat Eff Defects Solids 172:575

    CAS  Article  Google Scholar 

  10. 10.

    Johnson RA (1989). Phys Rev B 39:12554

    CAS  Article  Google Scholar 

  11. 11.

    Zhang B, Quyang Y (1993). Z Phys B 92:431

    CAS  Article  Google Scholar 

  12. 12.

    Zhang B, Quyang Y (1993). Phys Rev B 48:3022

    CAS  Google Scholar 

  13. 13.

    Fang F, Shu X, Deng H, Hu W, Zhu M (2003). Mate Sci Eng A 355:357

    Article  Google Scholar 

  14. 14.

    Jon C, Jin H, Ri C, Song P (2019). Philos Mag B 99:2604

    CAS  Article  Google Scholar 

  15. 15.

    Selhaoui N, Kleppa OJ (1993). J Alloys Compd 191:145

    CAS  Article  Google Scholar 

  16. 16.

    Kleppa OJ (1994). J Phase Equil A 15(240):240–263

    CAS  Article  Google Scholar 

  17. 17.

    Subramanian PR, Smith JF (1985). Metall Mater Trans A 16:1195

    Article  Google Scholar 

  18. 18.

    Topor L, Kleppa OJ (1988). Metall Mater Trans A 19:1061

    Article  Google Scholar 

  19. 19.

    Gomozov PA, Zasypalov YV, Mogutnov BM (1986). Russ J Phys Chem 60:1122

    Google Scholar 

  20. 20.

    de Boer FR, Room R, Mattens WCM, Miedema AR, Niessen AN (1988) Cohesion in Metals. North-Holland, Amsterdam

    Google Scholar 

  21. 21.

    Esin YO, Demin SE, Litovskii VV (1985). Russ J Phys Chem 59:131

    Google Scholar 

  22. 22.

    Kaufman L, Tanner LE (1979). CALPHAD 3:91

    CAS  Article  Google Scholar 

  23. 23.

    Kaufman L, Nesor M (1978). CALPHAD 2:81

    CAS  Article  Google Scholar 

Download references

Code availability

The code was written on Matlab.R2016b.

Funding

This work is financially supported by the National Natural Science Foundation of China (51474056) and the National Natural Science Foundation of China (51093084).

Author information

Affiliations

Authors

Contributions

The first and second authors derived the formula and wrote the code together. The third and fourth authors worked together to process the calculation results.

Corresponding author

Correspondence to Hak-Son Jin.

Ethics declarations

Ethics approval and consent to participate

This work has neither been published previously, nor under consideration for publication elsewhere. Its publication was approved by all authors and tacitly by the responsible authorities.

Consent for publication

It will not be published elsewhere in the same form, in English or in any other language, without the written consent of the Publisher.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, HS., Ho, SN., Ri, HC. et al. Formation enthalpies and dilute heats of HCP-HCP disordered binary alloys: modified ones of embedded atom method potentials. J Mol Model 27, 99 (2021). https://doi.org/10.1007/s00894-021-04678-4

Download citation

Keywords

  • EAM
  • HCP metal
  • Binary alloy
  • Alloy potential
  • Formation enthalpy
  • Dilute heat