Skip to main content
Log in

The effect of different aromatic conjugated bridges on optoelectronic properties of diketopyrrolopyrrole-based donor materials for organic photovoltaics

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A series of twelve Acceptor-π-Donor-π-Acceptor (A-π-D-π-A) topology-based donor molecules, where diketopyrrolopyrrole (DPP) as donor core unit is connected through furan which acts as conjugated π-bridge (CB) to aromatic derivatives (Ar) as acceptor units, have been investigated by making substitutions in acceptor units by using density functional theory(DFT) and time-dependent density functional theory (TD-DFT) for organic solar cell applications. The comparative study of optoelectronic properties indicates that thiadiazole with pyridine units containing molecules (M6b) exhibit lower energy of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels than those of oxadiazole and pyridine containing units (M6b). Among our investigated donors, the smallest Eg of 1.60 eV was observed for both M6a and M6b with distinctive broad absorption at 843 and 857 nm, respectively. Overall, smaller electron transfer (λe) values in contrast to hole transfer (λh) demonstrate that these donor compounds would be best for λe. The calculated open circuit voltage (Voc) is 2.45 and 2.17 eV, regarding bisPCBM and PC60BM (phenyl-C61-butyric acid methyl ester) acceptors. Thus, these theoretical calculations not only endorse the deep consideration between the chemical structures and optoelectronic characteristics of the donor-acceptor systems but also suggest appropriate materials for high-performance Organic Photovoltaics (OPV).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Irfan A, Al-Sehemi AG (2012) Quantum chemical study in the direction to design efficient donor-bridge-acceptor triphenylamine sensitizers with improved electron injection. J Mol Model 18(11):4893–4900

    Article  CAS  PubMed  Google Scholar 

  2. Nozik AJ, Miller J (2010) Introduction to solar photon conversion. ACS Publications, Washington, D.C.

    Book  Google Scholar 

  3. Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed 46(1–2):52–66

    CAS  Google Scholar 

  4. Shin WS et al (2006) Effects of functional groups at perylene diimide derivatives on organic photovoltaic device application. J Mater Chem 16(4):384–390

    Article  CAS  Google Scholar 

  5. Lee JW et al (2016) Ternary blend composed of two organic donors and one acceptor for active layer of high-performance organic solar cells. ACS Appl Mater Interfaces 8(17):10961–10967

    Article  CAS  PubMed  Google Scholar 

  6. Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48(2):183–185

    Article  CAS  Google Scholar 

  7. Liang Y, Yu L (2010) Development of semiconducting polymers for solar energy harvesting. Polym Rev 50(4):454–473

    Article  CAS  Google Scholar 

  8. Montcada NF et al (2013) High open circuit voltage in efficient thiophene-based small molecule solution processed organic solar cells. Org Electron 14(11):2826–2832

    Article  CAS  Google Scholar 

  9. You J et al (2013) A polymer tandem solar cell with 10.6% power conversion efficiency. Nat Commun 4:1446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zhou Y et al (2015) Synthesis and photovoltaic properties of new small molecules with rhodanine derivative as the end-capped blocks. Org Electron 17:355–363

    Article  CAS  Google Scholar 

  11. Walker B, Kim C, Nguyen T-Q (2010) Small molecule solution-processed bulk heterojunction solar cells. Chem Mater 23(3):470–482

    Article  CAS  Google Scholar 

  12. Sun Y et al (2012) Solution-processed small-molecule solar cells with 6.7% efficiency. Nat Mater 11(1):44

    Article  CAS  Google Scholar 

  13. Welch GC et al (2011) A modular molecular framework for utility in small-molecule solution-processed organic photovoltaic devices. J Mater Chem 21(34):12700–12709

    Article  CAS  Google Scholar 

  14. Sun Q et al (2015) Revealing the effect of donor/acceptor intermolecular arrangement on organic solar cells performance based on two-dimensional conjugated small molecule as electron donor. Org Electron 24:30–36

    Article  CAS  Google Scholar 

  15. Blom PW et al (2007) Device physics of polymer: fullerene bulk heterojunction solar cells. Adv Mater 19(12):1551–1566

    Article  CAS  Google Scholar 

  16. Lin Y, Li Y, Zhan X (2012) Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev 41(11):4245–4272

    Article  CAS  PubMed  Google Scholar 

  17. Wu F-C et al Influences of device structures on microstructure-correlated photovoltaic characteristics of organic solar cells. In Proc. of SPIE Vol. 2017

  18. Kyaw AKK et al (2013) Efficient solution-processed small-molecule solar cells with inverted structure. Adv Mater 25(17):2397–2402

    Article  CAS  PubMed  Google Scholar 

  19. Zhou J et al (2013) Solution-processed and high-performance organic solar cells using small molecules with a Benzodithiophene unit. J Am Chem Soc 135(23):8484–8487

    Article  CAS  PubMed  Google Scholar 

  20. He C et al (2007) Synthesis and photovoltaic properties of a solution-Processable organic molecule containing Triphenylamine and DCM moieties. J Phys Chem C 111(24):8661–8666

    Article  CAS  Google Scholar 

  21. Jin R, Chang Y (2015) A theoretical study on photophysical properties of triphenylamine-cored molecules with naphthalimide arms and different π-conjugated bridges as organic solar cell materials. Phys Chem Chem Phys 17(3):2094–2103

    Article  CAS  PubMed  Google Scholar 

  22. Kungwan N et al (2014) Theoretical study of linker-type effect in carbazole–carbazole-based dyes on performances of dye-sensitized solar cells. Theor Chem Accounts 133(8):1523

    Article  CAS  Google Scholar 

  23. Martínez JP et al (2015) Extent of charge separation and exciton delocalization for electronically excited states in a triphenylamine-C60 donor–acceptor conjugate: a combined molecular dynamics and TD-DFT study. Theor Chem Accounts 134(2):12

    Article  CAS  Google Scholar 

  24. Mohamad M et al (2015) First principles investigations of vinazene molecule and molecular crystal: a prospective candidate for organic photovoltaic applications. J Mol Model 21(2):27

    Article  PubMed  CAS  Google Scholar 

  25. Guo X et al (2012) Poly (thieno [3, 2-b] thiophene-alt-bithiazole): AD–A copolymer donor showing improved photovoltaic performance with indene-C60 bisadduct acceptor. Macromolecules 45(17):6930–6937

    Article  CAS  Google Scholar 

  26. Roncali J (2009) Molecular bulk heterojunctions: an emerging approach to organic solar cells. Acc Chem Res 42(11):1719–1730

    Article  CAS  PubMed  Google Scholar 

  27. Demeter D et al (2011) Manipulation of the open-circuit voltage of organic solar cells by desymmetrization of the structure of acceptor–donor–acceptor molecules. Adv Funct Mater 21(22):4379–4387

    Article  CAS  Google Scholar 

  28. Yin B et al (2010) Solution-processed bulk heterojunction organic solar cells based on an oligothiophene derivative. Appl Phys Lett 97(2):139

    Article  CAS  Google Scholar 

  29. Zhang J et al (2011) Red-emission organic light-emitting diodes based on solution-processable molecules with triphenylamine core and benzothiadiazole-thiophene arms. SCIENCE CHINA Chem 54(4):695–698

    Article  CAS  Google Scholar 

  30. Huang J et al (2012) Fine-tuning device performances of small molecule solar cells via the more polarized DPP-attached donor units. Phys Chem Chem Phys 14(41):14238–14242

    Article  CAS  PubMed  Google Scholar 

  31. Jin R, Wang K (2015) Rational design of diketopyrrolopyrrole-based small moleculesas donating materials for organic solar cells. Int J Mol Sci 16(9):20326–20343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim Y et al (2014) Synthesis of diketopyrrolopyrrole (DPP)-based small molecule donors containing thiophene or furan for photovoltaic applications. Mater Chem Phys 143(2):825–829

    Article  CAS  Google Scholar 

  33. Miyata Y, Nishinaga T, Komatsu K (2005) Synthesis and structural, electronic, and optical properties of oligo(thienylfuran)s in comparison with oligothiophenes and oligofurans. J Organomet Chem 70(4):1147–1153

    Article  CAS  Google Scholar 

  34. Frisch M et al (2009) Gaussian 09, revision D. 01. Gaussian, Inc, Wallingford

    Google Scholar 

  35. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110(13):6158–6170

    Article  CAS  Google Scholar 

  36. Bibi S, Li P, Zhang J (2013) X-shaped donor molecules based on benzo[2,1-b:3,4-b′]dithiophene as organic solar cell materials with PDIs as acceptors. J Mater Chem A 1(44):13828

    Article  CAS  Google Scholar 

  37. Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 65(3):599

    Article  CAS  Google Scholar 

  38. Marcus RA (1964) Chemical and electrochemical electron-transfer theory. Annu Rev Phys Chem 15(1):155–196

    Article  CAS  Google Scholar 

  39. Prezhdo OV (2002) Assessment of theoretical approaches to the evaluation of dipole moments of chromophores for nonlinear optics. Adv Mater 14(8):597–600

    Article  CAS  Google Scholar 

  40. Köse ME et al (2007) Theoretical studies on conjugated phenyl-cored thiophene dendrimers for photovoltaic applications. J Am Chem Soc 129(46):14257–14270

    Article  CAS  PubMed  Google Scholar 

  41. Chen JD et al (2015) Single-junction polymer solar cells exceeding 10% power conversion efficiency. Adv Mater 27(6):1035–1041

    Article  CAS  PubMed  Google Scholar 

  42. Bai H et al (2014) Acceptor–donor–acceptor small molecules based on indacenodithiophene for efficient organic solar cells. ACS Appl Mater Interfaces 6(11):8426–8433

    Article  CAS  PubMed  Google Scholar 

  43. Lenes M et al (2008) Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells. Adv Mater 20(11):2116–2119

    Article  CAS  Google Scholar 

  44. Shaheen SE et al (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78(6):841–843

    Article  CAS  Google Scholar 

  45. Wienk MM et al (2003) Efficient methano [70] fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem 115(29):3493–3497

    Article  Google Scholar 

  46. Qin C et al (2011) Quantum chemical study of structures, electronic spectrum, and nonlinear optical properties of polynuclear lithium compounds. Comput Theor Chem 966(1):14–19

    Article  CAS  Google Scholar 

  47. Gruhn NE et al (2002) The vibrational reorganization energy in pentacene: molecular influences on charge transport. J Am Chem Soc 124(27):7918–7919

    Article  CAS  PubMed  Google Scholar 

  48. Lin BC et al (2005) Charge transport properties of tris (8-hydroxyquinolinato) aluminum (III): why it is an electron transporter. J Am Chem Soc 127(1):66–67

    Article  CAS  PubMed  Google Scholar 

  49. Tang S, Zhang J (2011) Rational design of organic asymmetric donors D1-A-D2 possessing broad absorption regions and suitable frontier molecular orbitals to match typical acceptors toward solar cells. J Phys Chem A 115(20):5184–5189

    Article  CAS  PubMed  Google Scholar 

  50. Martin RL (2003) Natural transition orbitals. J Chem Phys 118(11):4775–4777

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The calculations were performed in the computational and theoretical chemistry laboratory at department of chemistry, University of Agriculture Faisalabad, Pakistan. The authors vastly acknowledge the Higher education commission (HEC) of Pakistan and University of Agriculture Faisalabad for financial and technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shafiq UrRehman or Shamsa Bibi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3379 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiq UrRehman, Alam, A., Bibi, S. et al. The effect of different aromatic conjugated bridges on optoelectronic properties of diketopyrrolopyrrole-based donor materials for organic photovoltaics. J Mol Model 26, 154 (2020). https://doi.org/10.1007/s00894-020-4341-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4341-8

Keywords

Navigation