Skip to main content
Log in

Molecular dynamics simulation of polystyrene copolymer with octyl short-chain branches in toluene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this study, dimensional, conformational and dynamic behaviors of a short-chain branched styrene/1-octene copolymer chain with different 1-octene percentages, i.e., 0, 2, 4 and 6%, in toluene are investigated at the temperature of 298.15 K via molecular dynamics simulation. The chain dimensions and flexibility in the solvent are evaluated by calculating the radius of gyration (Rg), end-to-end distance (<r0>), surface area (Ach), and volume (Vch) of the copolymer chain. The mean square displacement (MSD) and diffusivity coefficient for each copolymer chain are measured to determine its dynamic behavior and mobility in aromatic media. To consider the effect of increasing the 1-octene co-monomer percentage on the copolymer chain affinity to the solvent molecules, the interaction energy (Eint) and Flory-Huggins (FH) interaction parameter are calculated for each equilibrated solution model. The simulation results indicate that the co-monomer level increment in the copolymer structure reduces the chain Rg amount and its interaction with the solvent. The <r0> of the chain increases up to 4% co-monomer content, while further co-monomer content decreases the <r0> value. Additionally, the viscosity of the equilibrated dilute solutions is calculated via non-equilibrium molecular dynamics simulation (NEMD). Moreover, the steric hindrance of the copolymers and the solvent molecules capturing in the dilute solution is determined via radial distribution function (RDF) analysis. Helmholtz free energy and the system entropy changes are calculated to evaluate the tendency of the copolymer to the solvent molecules and its dilute solution irregularity, respectively.

The figure shows the variations trend of the poly(styrene-co-1-octene) chain dimensions in toluene aromatic solvent by increasing the 1-octene content (x), after the equilibration state. Red and blue colors represent the carbon atoms of the copolymer chain backbone and 1-octene side chains, respectively. The styrene rings and the hydrogen atoms of the chains were removed for better view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Feldman D, Barbalata A (1996) Synthetic polymers: technology, properties, applications1st edn. Springer Science & Business Media, London

    Google Scholar 

  2. Mohammad F (2007) Specialty polymers: materials and applications. I. K. International Pvt Ltd, New Delhi

    Google Scholar 

  3. Nam C, Li H, Zhang G, Mike Chung TC (2016) Petrogel: new hydrocarbon (oil) absorbent based on polyolefin polymers. Macromolecules 49:5427–5437

    CAS  Google Scholar 

  4. Ceylan D, Dogu S, Karacik B, Yakan SD, Okay OS, Okay O (2009) Evaluation of butyl rubber as sorbent material for the removal of oil and polycyclic aromatic hydrocarbons from seawater. Environ Sci Technol 43:3846–3852

    CAS  PubMed  Google Scholar 

  5. Tanobe VOA, Sydenstricker THD, Amico SC, Vargas JVC, Zawadzki SF (2008) Evaluation of flexible postconsumed polyurethane foams modified by polystyrene grafting as sorbent material for oil spills. J Appl Polym Sci 111:1842–1849

    Google Scholar 

  6. Lin J, Shang Y, Ding B, Yang J, Yu J, Al-Deyab SS (2012) Nanoporous polystyrene fibers for oil spill cleanup. Mar Pollut Bull 64:347–352

    CAS  PubMed  Google Scholar 

  7. Zhou MH, Cho WJ (2002) Synthesis and properties of high oil-absorbent 4-tert- butylstyrene-EPDM divinylbenzene graft terpolymer. J Appl Polym Sci 85:2119–2129

    CAS  Google Scholar 

  8. Essawy HA, Essa MM, Abdeen Z (2010) Oil-absorptive polymeric networks based on dispersed oleophilized nanolayers of laponite within ethylene-propylene-diene monomer vulcanizates. J Appl Polym Sci 115:385–392

    CAS  Google Scholar 

  9. Shan GR, Xu PY, Weng ZX, Huang ZM (2003) Oil-absorption function of physical crosslinking in the high-oil-absorption resins. J Appl Polym Sci 90:3945–3950

    CAS  Google Scholar 

  10. Fouchet B (2009) Diffusion of mineral oil in styrene-butadiene polymer films. J Appl Polym Sci 111:2886–2891

    CAS  Google Scholar 

  11. Yuan X, Chung TCM (2012) Novel solution to oil spill recovery: using thermodegradable polyolefin oil superabsorbent polymer (Oil−SAP). Energy Fuel 26:4896–4902

    CAS  Google Scholar 

  12. Han J, Boyd RH (1996) Molecular packing and small-penetrant diffusion in polystyrene: a molecular dynamics simulation study. Polymer 37:1797–1804

    CAS  Google Scholar 

  13. Amani M, Iranagh SA, Golzar K, Sadeghi GMM, Modarress H (2014) Study of nanostructure characterizations and gas separation properties of poly(urethane–urea)s membranes by molecular dynamics simulation. J Membr Sci 462:28–41

    CAS  Google Scholar 

  14. Mozaffari F, Eslami H, Moghadasi J (2010) Molecular dynamics simulation of diffusion and permeation of gases in polystyrene. Polymer 51:300–307

    CAS  Google Scholar 

  15. Chen Y, Liu QL, Zhu AM, Zhang QG, Wu JY (2010) Molecular simulation of Co2/Ch4 permeabilities in polyamide–imide isomers. J Membr Sci 348:204–212

    CAS  Google Scholar 

  16. Nicholson LK, Higgins JS (1981) Dynamics of dilute polymer solutions. Macromolecules 14:836–843

    CAS  Google Scholar 

  17. Chen H, Li J, Ding Y, Zhang G, Zhang Q, Wu C (2005) Folding and unfolding of individual PNIPAM-g-PEO copolymer chains in dilute aqueous solutions. Macromolecules 38:4403–4408

    CAS  Google Scholar 

  18. Cheung DL (2012) Molecular simulation of hydrophobin adsorption at an oil−water interface. Langmuir 28:8730–8736

    CAS  PubMed  Google Scholar 

  19. Ajori S, Ansari R, Darvizeh M (2016) On the vibrational behavior of single- and double-walled carbon nanotubes under the physical adsorption of biomolecules in the aqueous environment: a molecular dynamics study. J Mol Model 22:62–69

    CAS  PubMed  Google Scholar 

  20. Haghighi S, Ansari R, Ajori S (2019) Interfacial properties of 3D metallic carbon nanostructures (T6 and T14)-reinforced polymer nanocomposites: a molecular dynamics study. J Mol Graph Model 92:341–356

    CAS  PubMed  Google Scholar 

  21. Ansari R, Ajori S, Rouhi S (2014) Characterization of the mechanical properties of polyphenylene polymer using molecular dynamics simulations. Physica B 481:80–85

    Google Scholar 

  22. Haghighi S, Ansari R, Ajori S (2019) Influence of polyethylene cross-linked functionalization on the interfacial properties of carbon nanotube-reinforced polymer nanocomposites: a molecular dynamics study. J Mol Model 25:105–117

    CAS  PubMed  Google Scholar 

  23. Ansari R, Rouhi S, Ajori S (2018) Molecular dynamics simulations of the polymer/amine functionalized single-walled carbon nanotubes interactions. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2018.04.133

  24. Ansari R, Ajori S, Rouhi S (2015) Investigation of the adsorption of polymer chains on amine-functionalized double-walled carbon nanotubes. J Mol Model 21:312–322

    CAS  PubMed  Google Scholar 

  25. Ajori S, Parsapour H, Ansari R (2019) Structural properties and buckling behavior of non-covalently functionalized single- and double-walled carbon nanotubes with pyrenelinked polyamide in aqueous environment using molecular dynamics simulations. J Phys Chem Solids 131:79–85

    CAS  Google Scholar 

  26. Tesei G, Paradossi G, Chiessi E (2012) Poly(vinyl alcohol) oligomer in dilute aqueous solution: a comparative molecular dynamics simulation study. J Phys Chem B 116:10008–10019

    CAS  PubMed  Google Scholar 

  27. Horinaka J, Ito S, Yamamoto M, Matsuda T (2000) Molecular dynamics simulation of local motion of polystyrene chain end-comparison with the fluorescence depolarization study. Comput Theor Polym Sci 10:365–370

    CAS  Google Scholar 

  28. Dünweg B, Kremer K (1993) Molecular dynamics simulation of a polymer chain in solution. J Chem Phys 99:6983–6997

    Google Scholar 

  29. Drew PM, Adolf DB (2005) Intrinsic viscosity of dendrimers via equilibrium molecular dynamics. Soft Matter 1:146–151

    CAS  Google Scholar 

  30. Goicochea AG, Briseño M (2012) Application of molecular dynamics computer simulations to evaluate polymer-solvent interactions. J Coat Technol Res 9:279–286

    Google Scholar 

  31. Moe NE, Ediger MD (1995) Molecular dynamics computer simulation of polyisoprene local dynamics in dilute toluene solution. Macromolecules 28:2329–2338

    CAS  Google Scholar 

  32. Zhang B, Liu R, Zhang J, Liu B, He J (2016) MesoDyn simulation study of phase behavior for dye-polyether derivatives in aqueous solutions. Comput Theor Chem 1091:8–17

    CAS  Google Scholar 

  33. Zhelavskyi OS, Kyrychenko A (2019) Atomistic molecular dynamics simulations of the LCST conformational transition in poly(N-Vinylcaprolactam) in water. J Mol Graph Model. https://doi.org/10.1016/j.jmgm.2019.04.004

  34. Mondello M, Yang HJ, Furuya H, Roe RJ (1994) Molecular dynamics simulation of atactic polystyrene. 1. Comparison with X-ray scattering data. Macromolecules 27:3566–3574

    CAS  Google Scholar 

  35. Tamaia Y, Fukuda M (2005) Sorption of organic solvents on the surface of crystalline syndiotactic polystyrene studied by molecular dynamics simulation. J Mol Struct 739:27–32

    Google Scholar 

  36. Oh SY, Bae YC (2012) Role of intermolecular interactions for upper and lower critical solution temperature behaviors in polymer solutions: molecular simulations and thermodynamic modeling. Polymer 53:3772–3779

    CAS  Google Scholar 

  37. Sun H (1994) Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters. J Comput Chem 15:752–768

    CAS  Google Scholar 

  38. Sun H, Mumby SJ, Maple JR, Hagler AT (1994) An ab initio CFF93 all-atom force field for polycarbonates. J Am Chem Soc 116:2978–2987

    CAS  Google Scholar 

  39. Rasouli S, Moghbeli MR, Javan Nikkhah S (2018) A comprehensive molecular dynamics study of a single polystyrene chain in a good solvent. Curr Appl Phys 18:68–78

    Google Scholar 

  40. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    CAS  Google Scholar 

  41. Gedde UW (1995) Polymer physics1st edn. Chapman and Hall, London

    Google Scholar 

  42. Lee SH (2011) Molecular dynamics simulation studies of viscosity and diffusion of n-alkane oligomers at high temperatures. Bull Kor Chem Soc 32:3909–3913

    CAS  Google Scholar 

  43. Han KH, Jeon GS, Hong IK, Lee SB (2013) Prediction of solubility parameter from intrinsic viscosity. J Ind Eng Chem 19:1130–1136

    CAS  Google Scholar 

  44. Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications2nd edn. Academic Press, London

    Google Scholar 

  45. Martins SA, Sousa SF, Ramos MJ, Fernandes PA (2014) Prediction of solvation free energies with thermodynamic integration using the general amber force field. J Chem Theory Comput 10:3570–3577

    CAS  PubMed  Google Scholar 

  46. McQuarrie DA (2000) Statistical mechanics. University Science Books, Saucilito

    Google Scholar 

  47. Mitchell MJ, McCammon JA (1991) Free energy difference calculations by thermodynamic integration: difficulties in obtaining a precise value. J Comput Chem 12:271–275

    CAS  Google Scholar 

  48. Resat H, Mezei M (1993) Studies on free energy calculations. I. Thermodynamic integration using a polynomial path. J Chem Phys 99:6052–6061

    CAS  Google Scholar 

  49. Gonçalves PFB, Stassen H (2003) Free energy of solvation from molecular dynamics simulations for low dielectric solvents. J Comput Chem 24:1758–1765

    PubMed  Google Scholar 

  50. Gonçalves PFB, Stassen H (2004) Calculation of the free energy of solvation from molecular dynamics simulations. Pure Appl Chem 76:231–240

    Google Scholar 

  51. Zhang L, Wang X, Ma H, Huang Y (1999) Conformational behavior of short adsorbed polymer chains. Eur Polym J 35:167–172

    CAS  Google Scholar 

  52. Hansen CM (2000) Hansen solubility parameters: a User's handbook2nd edn. CRC Press, Boca Raton

    Google Scholar 

  53. Abe F, Einaga Y, Yoshizaki T, Yamakawa H (1993) Excluded-volume effects on the mean-square radius of gyration of oligo- and polystyrenes in dilute solutions. Macromolecules 26:1884–1890

    CAS  Google Scholar 

  54. Abe F, Einaga Y, Yamakawa H (1993) Excluded-volume effects on the intrinsic viscosity of oligomers and polymers of styrene and isobutylene. Macromolecules 26:1891–1897

    CAS  Google Scholar 

  55. Sperling LH (2006) Introduction to physical polymer science4th edn. Wiley, Hoboken

    Google Scholar 

  56. Yankova TS, Bobrovsky A, Vorobiev AK (2012) Order parameters <P2>, <P4> and <P6> of aligned nematic LC-polymer as determined by numerical simulation of EPR spectra. J Phys Chem B 116:6010–6016

    CAS  PubMed  Google Scholar 

  57. Wheeler DR, Fuller NG, Rowley RL (1997) Non-equilibrium molecular dynamics simulation of the shear viscosity of liquid methanol: adaptation of the Ewald sum to lees± Edwards boundary conditions. Mol Phys 92:55–62

    CAS  Google Scholar 

  58. Wang BY, Cummings PT (1993) Non-equilibrium molecular dynamics calculation of the shear viscosity of carbon dioxide/Ethan mixtures. Mol Simul 10:1–11

    Google Scholar 

  59. Rasouli S, Moghbeli MR, Javan Nikkhah S (2019) A deep insight into the polystyrene chain in cyclohexane at theta temperature: molecular dynamics simulation and quantum chemical calculations. J Mol Model. https://doi.org/10.1007/s00894-019-4078-4

  60. Prausnitz JM, Lichtenthaler RN, Azevedo EGD (1999) Molecular thermodynamics of fluid-phase equilibria3th edn. Prentice Hall PTR, Upper Saddle River

    Google Scholar 

  61. Bozdogan AE (2004) A method for determination of thermodynamic and solubility parameters of polymers from temperature and molecular weight dependence of intrinsic viscosity. Polymer 45:6415–6424

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Moghbeli.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasouli, S., Moghbeli, M.R. & Nikkhah, S.J. Molecular dynamics simulation of polystyrene copolymer with octyl short-chain branches in toluene. J Mol Model 26, 80 (2020). https://doi.org/10.1007/s00894-020-4339-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4339-2

Keywords

Navigation