Skip to main content

Advertisement

Log in

Mechanical, electronic and stability properties of multi-walled beryllium oxide nanotubes and nanopeapods: a density functional theory study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Single-, double-, and triple-walled beryllium oxide nanotubes (BeONTs) along with BeO nanopeapods were simulated and geometrically optimized under the density functional theory (DFT) framework to investigate their Young’s modulus, electronic properties, and stability. We found better properties in single-walled nanotubes, either their electronic or mechanical properties, than other mentioned nanotubes. Increase in the radius and inter-wall distance made an overall decrease in the Young’s modulus of SW and DW BeONTs. The highest obtained modulus of SWBeONTs and DWBeONTS was calculated for structures (14,0) and (8,0)@(14,0) with the magnitudes of 700.12 Gpa and 712.24 Gpa, respectively. In addition, increasing the wall number from one to two resulted to significant growth in Young’s modulus of DWBeONTs while created no significant difference between DWBeONTs and TWBeONTs. Bandgap energy of single-walled nanotubes was higher than those of double- and triple-walled nanotubes, and the bandgap showed consistent soar in both SW and DW BeONTs via increase in the radius and inter-wall distance, respectively. Furthermore, considering nanopeapods with various interlayer distances revealed that the Young’s modulus and energy gap behavior of these structures were similar to what we observed in SWBeONTs. However, nanopeapods showed weaker mechanical and semiconducting properties compared with SWBeONTs. Moreover, calculating the formation energies of all under consideration structures revealed a reduction of formation energy via an increase in the dimension of single-walled nanotubes, an increase in the dimension of nanotubes via adding more walls, and an increase in the dimension of peapod structures as well, and the bigger structures are more stable than smaller ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605

    CAS  Google Scholar 

  2. Ivanovskii AL (2002) Non-carbon nanotubes: synthesis and simulation. Russ Chem Rev 71(3):175–194

    CAS  Google Scholar 

  3. Lieber CM (1998) One-dimensional nanostructures: chemistry, physics & applications. Solid State Commun 107(11):607–616

    CAS  Google Scholar 

  4. Rathi SJ, Ray AK (2008) On the existence and stability of single walled SiGe nanotubes. Chem Phys Lett 466(1):79–83

    CAS  Google Scholar 

  5. Marana NL, Casassa S, Longo E, Sambrano JR (2018) Computational simulations of ZnO@GaN and GaN@ZnO core@shell nanotubes. J Solid State Chem 266:217–225

    CAS  Google Scholar 

  6. Samadipakchin P, Mortaheb HR, Zolfaghari A (2017) ZnO nanotubes: preparation and photocatalytic performance evaluation. J Photochem Photobiol A Chem 337:91–99

    CAS  Google Scholar 

  7. Setoodeh A, Attariani H, Jahanshahi M (2011) Mechanical properties of silicon-germanium nanotubes under tensile and compressive loadings. J Nanopart Res 15:105–114

    CAS  Google Scholar 

  8. Kim DE, Pak D (2019) Ti plate with TiO2 nanotube arrays as a novel cathode for nitrate reduction. Chemosphere 228:611–618

    CAS  PubMed  Google Scholar 

  9. Zhao H, Yang C, Li N, Yin J, Feng Y, Liu Y et al (2019) Electrical and mechanical properties of polyimide composite films reinforced by ultralong titanate nanotubes. Surf Coat Technol 360:13–19

    CAS  Google Scholar 

  10. Satish G, Prasad VVS, Ramji K (2018) Effect on mechanical properties of carbon nanotube based composite. Mater Today Proc 5(2, Part 2):7725–7734

    CAS  Google Scholar 

  11. Ganji M, Sharifi N, Ahangari MG (2014) Adsorption of H2S molecules on non-carbonic and decorated carbonic graphenes: a van der Waals density functional study. Comput Mater Sci 92:127–134

    CAS  Google Scholar 

  12. Ahangari MG, Fereidoon A, Jahanshahi M, Ganji M (2013) Electronic and mechanical properties of single-walled carbon nanotubes interacting with epoxy: a DFT study. Physica E 48:148–156

    Google Scholar 

  13. Hamed Mashhadzadeh A, Fereidoon A, Ghorbanzadeh Ahangari M (2017) Combining density functional theory-finite element multi-scale method to predict mechanical properties of polypropylene/graphene nanocomposites: experimental study. Mater Chem Phys 201:214–223

    CAS  Google Scholar 

  14. Fereidoon A, Mostafaei M, Ganji MD, Memarian F (2015) Atomistic simulations on the influence of diameter, number of walls, interlayer distance and temperature on the mechanical properties of BNNTs. Superlattice Microst 86:126–133

    CAS  Google Scholar 

  15. Dadrasi A, Albooyeh AR, Hamed Mashhadzadeh A (2019) Mechanical properties of silicon-germanium nanotubes: a molecular dynamics study. Appl Surf Sci 498:143867

    CAS  Google Scholar 

  16. Hao J-H, Wang Y-F, Yin Y-H, Jiang R, Wang Y-F, Jin Q-H (2015) An ab initio study of the size-dependent mechanical behavior of single-walled AlN nanotubes. Solid State Sci 45:30–34

    CAS  Google Scholar 

  17. Mashhadzadeh A, Fereidoon A, Ahangari M (2017) Surface modification of carbon nanotubes using 3-aminopropyltriethoxysilane to improve mechanical properties of nanocomposite based polymer matrix: experimental and density functional theory study

  18. Hamed Mashhadzadeh A, Fathalian M, Ghorbanzadeh Ahangari M, Shahavi MH (2018) DFT study of Ni, Cu, Cd and Ag heavy metal atom adsorption onto the surface of the zinc-oxide nanotube and zinc-oxide graphene-like structure. Mater Chem Phys 220:366–373

    CAS  Google Scholar 

  19. Continenza A, Wentzcovitch R, Freeman AJ (1990) Theoretical investigation of graphitic BeO

  20. Allouche A, Oberkofler M, Reinelt M, Linsmeier C (2010) Quantum modeling of hydrogen retention in beryllium bulk and vacancies. J Phys Chem C 114(8):3588–3598

    CAS  Google Scholar 

  21. Kiiko VS, Vaispapir VY (2015) Thermal conductivity and prospects for application of BeO ceramic in electronics. Glas Ceram 71(11):387–391

    CAS  Google Scholar 

  22. Fathalian A, Kanjouri F, Jalilian J (2013) BeO nanotube bundle as a gas sensor. Superlattice Microst 60:291–299

    CAS  Google Scholar 

  23. Chigo Anota E, Cocoletzi GH (2013) Electronic properties of functionalized (5,5) beryllium oxide nanotubes. J Mol Graph Model 42:115–119

    CAS  PubMed  Google Scholar 

  24. Roozbahani GM, Seif A (2012) A computational NMR study of nitrogen substitutional impurity in the armchair BeO nanotube. Superlattice Microst 51(3):363–371

    CAS  Google Scholar 

  25. Yang L, Greenfeld I, Wagner HD (2016) Toughness of carbon nanotubes conforms to classic fracture mechanics. Sci Adv 2(2):e1500969

    PubMed  PubMed Central  Google Scholar 

  26. Davoodi J, Soleymani M, Sabet HA (2018) Thermal stability of single walled SiGe nanotube with vacancy defects: a molecular dynamics simulation study. Silicon 10(3):731–736

    CAS  Google Scholar 

  27. Allouche A, Ferro Y (2015) First-principles study of hydrogen retention and diffusion in beryllium oxide. Solid State Ionics 272:91–100

    CAS  Google Scholar 

  28. Shen H (2007) Compressive and tensile properties of Ar filled carbon nano-peapods. Mater Lett 61(2):527–530

    CAS  Google Scholar 

  29. Okazaki T (2014) Chapter 10 - preparation and properties of carbon nanopeapods. In: Tanaka K, Iijima S (eds) Carbon nanotubes and graphene2nd edn. Elsevier, Oxford, pp 225–252

    Google Scholar 

  30. Georgakilas V, Bourlinos AB, Ntararas E, Ibraliu A, Gournis D, Dimos K et al (2016) Graphene nanobuds: synthesis and selective organic derivatisation. Carbon 110:51–55

    CAS  Google Scholar 

  31. Hamed Mashhadzadeh A, Ghorbanzadeh Ahangari M, Dadrasi A, Fathalian M (2019) Theoretical studies on the mechanical and electronic properties of 2D and 3D structures of beryllium-oxide graphene and graphene nanobud. Appl Surf Sci 476:36–48

    CAS  Google Scholar 

  32. Yang X, Wang L, Huang Y, To AC, Cao B (2015) Effects of nanobuds and heat welded nanobuds chains on mechanical behavior of carbon nanotubes. Comput Mater Sci 109:49–55

    CAS  Google Scholar 

  33. Sohi AN, Naghdabadi R (2009) Stability of single-walled carbon nanopeapods under combined axial compressive load and external pressure. Physica E 41(3):513–517

    CAS  Google Scholar 

  34. Yu H, Xu L, Wang H, Jiang H, Li C (2019) Nanochannel-confined synthesis of Nb2O5/CNTs nanopeapods for ultrastable lithium storage. Electrochim Acta 295:829–834

    CAS  Google Scholar 

  35. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–BB71

    Google Scholar 

  36. Kohn W (1999) Nobel lecture: electronic structure of matter---wave functions and density functionals. Rev Mod Phys 71(5):1253–1266

    CAS  Google Scholar 

  37. Ordejón P, Artacho E, Soler JM (1996) Self-consistent order-$N$ density-functional calculations for very large systems. Phys Rev B 53(16):R10441–R104R4

    Google Scholar 

  38. José M, Soler EA, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14(11):2745

    Google Scholar 

  39. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys Rev Lett 78(7):1396

    CAS  Google Scholar 

  40. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192

    Google Scholar 

  41. Shahrokhi M, Leonard C (2016) Quasi-particle energies and optical excitations of wurtzite BeO and its nanosheet. J Alloys Compd 682:254–262

    CAS  Google Scholar 

  42. Jalilian J, Safari M, Naderizadeh S (2016) Buckling effects on electronic and optical properties of BeO monolayer: first principles study. Comput Mater Sci 117:120–126

    CAS  Google Scholar 

  43. Rastegar SF, Ahmadi Peyghan A, Soleymanabadi H (2015) Ab initio studies of the interaction of formaldehyde with beryllium oxide nanotube. Physica E 68:22–27

    CAS  Google Scholar 

  44. Sherafati M, Shokuhi Rad A, Ardjmand M, Heydarinasab A, Peyravi M, Mirzaei M (2018) Beryllium oxide (BeO) nanotube provides excellent surface towards adenine adsorption: a dispersion-corrected DFT study in gas and water phases. Curr Appl Phys 18(9):1059–1065

    Google Scholar 

  45. Memarian F, Fereidoon A, Khodaei S, Mashhadzadeh AH, Ganji MD (2017) Molecular dynamic study of mechanical properties of single/double wall SiCNTs: consideration temperature, diameter and interlayer distance. Vacuum 139:93–100

    CAS  Google Scholar 

  46. Vahedi Fakhrabad D, Shahtahmassebi N (2013) First-principles calculations of the Young's modulus of double wall boron-nitride nanotubes. Mater Chem Phys 138(2):963–966

    CAS  Google Scholar 

  47. Shakerzdeh E, Tahmasebi E, Shamlouei HR (2015) The influence of alkali metals (Li, Na and K) interaction with Be12O12 and Mg12O12 nanoclusters on their structural, electronic and nonlinear optical properties: a theoretical study. Synth Met 204:17–24

    CAS  Google Scholar 

  48. Wu C-D, Fang T-H, Chan C-Y (2011) A molecular dynamics simulation of the mechanical characteristics of a C60-filled carbon nanotube under nanoindentation using various carbon nanotube tips. Carbon 49(6):2053–2061

    CAS  Google Scholar 

  49. Asghari M, Naghdabadi R, Rafati-Heravi J (2011) Small scale effects on the stability of carbon nano-peapods under radial pressure. Physica E 43(5):1050–1055

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Hamed Mashhadzadeh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostamiyan, Y., Mohammadi, V. & Hamed Mashhadzadeh, A. Mechanical, electronic and stability properties of multi-walled beryllium oxide nanotubes and nanopeapods: a density functional theory study. J Mol Model 26, 76 (2020). https://doi.org/10.1007/s00894-020-4328-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4328-5

Keywords

Navigation