Skip to main content
Log in

Thermodynamics study of biokerosene from coconut and palm kernel oils and JP-8 aircraft fuels in the gas phase by the DFT method

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, we performed a theoretical density functional theory (DFT) and semi-empirical (PM3) analysis to calculate thermodynamic properties of biokerosene from coconut and palm kernel oils, Jet Propulsion Fuel 8 (JP-8), and mixtures of these fuels. All simulations were performed in thermal equilibrium and for a temperature range of 0.5–1500 K, considering the canonical ensemble model. We predicted the thermal properties energy, enthalpy, enthalpy change, Gibbs free energy, entropy, and specific heat at constant pressure with respect to temperature. In addition, we compared the performances of the DFT functional hybrid B3LYP and the basis set 6-311++G(d,p) and PM3 methods, in order to determine their accuracy for thermodynamic predictions relating to the fuels. Calculations for combustion enthalpy were carried out using the following methods: B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, G4, and G3/G4. The results showed good agreement with measured values, indicating that DFT may be a good method to calculate and predict thermodynamic properties of the combustion reactions of kerosene and biokerosene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mota EAV, Neto AFG, Marques FC, Mota GVS, Martins MG, Costa FLP, Borges RS, Neto AMJC (2018) Time-dependent density functional theory analysis of triphenylamine-functionalized graphene doped with transition metals for photocatalytic hydrogen production. J Nanosci Nanotechnol 18:4987–4991. https://doi.org/10.1166/jnn.2018.15277

    Article  CAS  PubMed  Google Scholar 

  2. Aires JCN, Neto AFG, Maneschy CE, Huda MN, Anjos AR, Riul A, Souza JF, Neto AMJC (2017) Molecular dynamics of H2 storage in carbon nanotubes under external electric field effects: a sensor proposal. J Nanosci Nanotechnol 17:4858–4863. https://doi.org/10.1166/jnn.2017.13446

    Article  CAS  Google Scholar 

  3. Akella AK, Saini RP, Sharma MP (2009) Social, economical and environmental impacts of renewable energy systems. Renew Energy 34:390–396. https://doi.org/10.1016/J.RENENE.2008.05.002

    Article  Google Scholar 

  4. Goodger EM, Vere R (1985) Aviation fuels technology. Macmillan, London

    Book  Google Scholar 

  5. Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: a review. Renew Energy 36:3541–3549. https://doi.org/10.1016/J.RENENE.2011.04.031

    Article  CAS  Google Scholar 

  6. Paschalidou A, Tsatiris M, Kitikidou K (2016) Energy crops for biofuel production or for food? - SWOT analysis (case study: Greece). Renew Energy 93:636–647. https://doi.org/10.1016/J.RENENE.2016.03.040

    Article  Google Scholar 

  7. Ellerman AD, Buchner BK (2007) The European Union emissions trading scheme: origins, allocation, and early results. Rev Environ Econ Policy 1:66–87. https://doi.org/10.1093/reep/rem003

    Article  Google Scholar 

  8. Schmitigal J, Tebbe J (2011) JP-8 and other military fuels, DTIC Doc

  9. Braun-Unkhoff M, Riedel U (2015) Alternative fuels in aviation. CEAS Aeronaut J 6:83–93. https://doi.org/10.1007/s13272-014-0131-2

    Article  Google Scholar 

  10. Dunn RORO Alternative jet fuels from vegetable oils. Trans ASAE 44(2001):1751. https://doi.org/10.13031/2013.6988

  11. Dagaut P, Gaïl S (2007) Kinetics of gas turbine liquid fuels combustion: Jet-A1 and bio-kerosene, 93–101

  12. Korres DM, Karonis D, Lois E, Linck MB, Gupta AK (2008) Aviation fuel JP-5 and biodiesel on a diesel engine. Fuel 87:70–78. https://doi.org/10.1016/j.fuel.2007.04.004

    Article  CAS  Google Scholar 

  13. Wagutu AW, Chhabra SC, Thoruwa CL, Thoruwa TF, Mahunnah RLA (2009) Indigenous oil crops as a source for production of biodiesel in Kenya. Bull Chem Soc Ethiop 23:359–370. https://doi.org/10.4314/bcse.v23i3.47660

    Article  CAS  Google Scholar 

  14. Chiaramonti D, Prussi M, Buffi M, Tacconi D (2014) Sustainable bio kerosene: process routes and industrial demonstration activities in aviation biofuels. Appl Energy 136:767–774. https://doi.org/10.1016/j.apenergy.2014.08.065

    Article  CAS  Google Scholar 

  15. Davis SC, Diegel SW, Boundy RG (2008) Transportation energy data book: Edition 27. https://doi.org/10.2172/969954

  16. Hoekman SK (2009) Biofuels in the U.S. – challenges and opportunities. Renew Energy 34:14–22. https://doi.org/10.1016/J.RENENE.2008.04.030

    Article  CAS  Google Scholar 

  17. Baeza AMA-L, Lois AL, López LC, Bolonio D, Sanz-Pérez F, Lapuerta M (2013) Airplane materials compatibility with blends of fossil kerosene JET A1 with biokerosenes from babassu, palm kernel and coconut oils. Energy Environ Knowl Week 16:1

    Google Scholar 

  18. Oliveira JFG, Lucena IL, Saboya RMA, Rodrigues ML, Torres AEB, Fernandes FAN, Cavalcante CL, Parente EJS (2010) Biodiesel production from waste coconut oil by esterification with ethanol: the effect of water removal by adsorption. Renew Energy 35:2581–2584. https://doi.org/10.1016/J.RENENE.2010.03.035

    Article  CAS  Google Scholar 

  19. Bailis RE, Baka JE (2010) Greenhouse gas emissions and land use change from Jatropha Curcas -based jet fuel in Brazil. Environ Sci Technol 44:8684–8691. https://doi.org/10.1021/es1019178

    Article  CAS  PubMed  Google Scholar 

  20. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  21. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 37:785–789

    Article  CAS  Google Scholar 

  22. Jimenez-Izal E, Chiatti F, Corno M, Rimola A, Ugliengo P (2012) Glycine adsorption at nonstoichiometric (010) hydroxyapatite surfaces: a B3LYP study. J Phys Chem C 116:14561–14567. https://doi.org/10.1021/jp304473p

    Article  CAS  Google Scholar 

  23. Neto AFG, Lopes FS, Carvalho EV, Huda MN, Neto AMJC, Machado NT (2015) Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and ethanol — gasoline predicted by DFT method. J Mol Model 21:267. https://doi.org/10.1007/s00894-015-2815-x

    Article  CAS  PubMed  Google Scholar 

  24. Ichino T, Yoshioka Y (2012) Which oxidation state is preferable at S0state in oxygen-evolving complex, Mn4(II, III, IV, IV) or Mn4(III, III, III, IV)? A B3LYP study. Chem Phys Lett 545:107–111. https://doi.org/10.1016/j.cplett.2012.07.029

    Article  CAS  Google Scholar 

  25. Fantin PA, Barbieri PL, Canal Neto A, Jorge FE (2007) Augmented Gaussian basis sets of triple and quadruple zeta valence quality for the atoms H and from Li to Ar: applications in HF, MP2, and DFT calculations of molecular dipole moment and dipole (hyper)polarizability. J Mol Struct THEOCHEM 810:103–111. https://doi.org/10.1016/J.THEOCHEM.2007.02.003

    Article  CAS  Google Scholar 

  26. Huang Y-W, Lee S-L (2012) The B3LYP and BMK studies of CO adsorption on Pt(1 1 1): an insight through the chemical bonding analysis. Chem Phys Lett 530:64–70. https://doi.org/10.1016/j.cplett.2012.02.007

    Article  CAS  Google Scholar 

  27. Pereira ILG, Neto AFG, Moraes ES, Sousa BSM, Chen J, Costa JFS, Neto AMJC (2018) DFT and canonical ensemble investigations of gasoline additives at the gas phase: ETBE, MTBE, DIPE, ethanol and methanol. Theor Chem Accounts 137:127

    Article  Google Scholar 

  28. Neto AFG, Marques FC, Amador AT, Ferreira ADS, Neto AMJC (2019) DFT and canonical ensemble investigations on the thermodynamic properties of syngas and natural gas/syngas mixtures. Renew Energy 130:495–509

    Article  CAS  Google Scholar 

  29. Petersson GA (2001) Complete basis set models for chemical reactivity: from the helium atom to enzyme kinetics. In: Quantum-mechanical predict. Thermochem. Data, Kluwer Academic Publishers, Dordrecht, p 99–130. https://doi.org/10.1007/0-306-47632-0_4

  30. Simmie JM, Somers KP (2015) Benchmarking compound methods (CBS-QB3, CBS-APNO, G3, G4, W1BD) against the active thermochemical tables: a litmus test for cost-effective molecular formation enthalpies. J Phys Chem A 119:7235–7246. https://doi.org/10.1021/jp511403a

    Article  CAS  PubMed  Google Scholar 

  31. Ochterski JW, Petersson GA, Montgomery Jr JA (1998) A complete basis set model chemistry. V. Extensions to six or more heavy atoms. J Chem Phys 104:2598. https://doi.org/10.1063/1.470985

    Article  Google Scholar 

  32. Horwitz W, Kamps LR, Boyer KW (1980) Quality assurance in the analysis of foods and trace constituents. J Assoc Off Anal Chem 63:1344–1354

    CAS  PubMed  Google Scholar 

  33. Lin CY, Hodgson JL, Namazian M, Coote ML (2009) Comparison of G3 and G4 theories for radical addition and abstraction reactions. J Phys Chem A 113:3690–3697. https://doi.org/10.1021/jp900649j

    Article  CAS  PubMed  Google Scholar 

  34. Galvão DS, Soos ZG, Ramasesha S, Etemad S (1993) A parametric method 3 (PM3) study of trans-stilbene. J Chem Phys 98:3016–3021. https://doi.org/10.1063/1.464128

    Article  Google Scholar 

  35. Neto AFG, Huda MN, Marques FC, Borges RS, Neto AMJC (2017) Thermodynamic DFT analysis of natural gas. J Mol Model 23:224. https://doi.org/10.1007/s00894-017-3401-1

    Article  CAS  PubMed  Google Scholar 

  36. Christensen AS, Kubař T, Cui Q, Elstner M (2016) Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications. Chem Rev 116:5301–5337. https://doi.org/10.1021/acs.chemrev.5b00584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas JBF, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.01, Gaussian 09, Revis. B.01. Gaussian, Inc., Wallingford

    Google Scholar 

  38. Young DC (2001) CHEMISTRY Computational chemistry: a practical guide for applying techniques to real-world problems. https://doi.org/10.1002/jat.1666

  39. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) Gaussian-2 theory for molecular energies of first- and second-row compounds. J Chem Phys 94:7221–7230. https://doi.org/10.1063/1.460205

    Article  CAS  Google Scholar 

  40. Linstrom PJ, Mallard WG (eds) (2005) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  41. Ogruc Ildiz G, Akyuz S (2012) Conformational analysis and vibrational study of sulfanilamide. Vib Spectrosc 58:12–18. https://doi.org/10.1016/J.VIBSPEC.2011.10.005

    Article  CAS  Google Scholar 

  42. Dai Y, Shi J-Q, Zheng Q, Wang Z-Y (2011) Thermodynamic properties and relative stability of polyhydroxylated dibenzo-p-dioxins calculated by density functional theory. Jiegou Huaxue 30:354–361

    CAS  Google Scholar 

  43. Doll K, Harrison NM, Saunders VR (1999) A density functional study of lithium bulk and surfaces. J Phys Condens Matter 11:5007

    Article  CAS  Google Scholar 

  44. Fernandes D, Conway W, Burns R, Lawrance G, Maeder M, Puxty G (2012) Investigations of primary and secondary amine carbamate stability by 1H NMR spectroscopy for post combustion capture of carbon dioxide. J Chem Thermodyn 54:183–191. https://doi.org/10.1016/J.JCT.2012.03.030

    Article  CAS  Google Scholar 

  45. Rios SM, Barquín M, Nudelman NS (2014) Characterization of oil complex hydrocarbon mixtures by HSQC-NMR spectroscopy and PCA. J Phys Org Chem 27:352–357. https://doi.org/10.1002/poc.3233

    Article  CAS  Google Scholar 

  46. Kim Y, Hoon Sohn C, Hong M, Lee SY (2014) An analysis of fuel-oxidizer mixing and combustion induced by swirl coaxial jet injector with a model of gas-gas injection. Aerosp Sci Technol 37

  47. Poroikov VV, Filimonov DA, Ihlenfeldt W-DD, Gloriozova TA, Lagunin AA, Borodina YV, Stepanchikova AV, Nicklaus MC, Poroikov VV, Filimonov DA, Ihlenfeldt W-D, Gloriozova TA, Lagunin AA, Borodina YV, Stepanchikova AV, Nicklaus MC, Poroikov VV, Filimonov DA, Ihlenfeldt W-DD, Gloriozova TA, Lagunin AA, Borodina YV, Stepanchikova AV, Nicklaus MC (2003) PASS biological activity spectrum predictions in the enhanced open NCI database browser. J Chem Inf Comput Sci 43:228–236. https://doi.org/10.1021/ci020048r

    Article  CAS  PubMed  Google Scholar 

  48. Llamas A, García-Martínez M, Al-Lal A-M, Canoira L, Lapuerta M (2012) Biokerosene from coconut and palm kernel oils: production and properties of their blends with fossil kerosene. Fuel 102:483–490. https://doi.org/10.1016/J.FUEL.2012.06.108

    Article  CAS  Google Scholar 

  49. Beckett CW, Pitzer KS, Spitzer R (1947) The thermodynamic properties and molecular structure of cyclohexane, methylcyclohexane, ethylcyclohexane and the seven dimethylcyclohexanes1. J Am Chem Soc 69:2488–2495. https://doi.org/10.1021/ja01202a070

    Article  CAS  PubMed  Google Scholar 

  50. Atsdr (2017) Toxicological profile for JP-5, JP-8, and Jet A fuels

  51. Honnet S, Seshadri K, Niemann U, Peters N (2009) A surrogate fuel for kerosene. Proc Combust Inst 32:485–492. https://doi.org/10.1016/J.PROCI.2008.06.218

    Article  CAS  Google Scholar 

  52. Petcu A, Carlanescu R, Berbente C (2014) Straight and blended Camelina oil properties. Recent Adv Mech Eng Ser 11:160–167

    Google Scholar 

  53. ASTM D1655 - 18a Standard specification for aviation turbine fuels (n.d.). https://doi.org/10.1520/D1655-18A

  54. McQuarrie DA, Simon JD (1999) Molecular thermodynamics. University Science Books

  55. Beckett CW, Pitzer KS, Spitzer R (1947) The thermodynamic properties and molecular structure of cyclohexane, methylcyclohexane, ethylcyclohexane and the seven dimethylcyclohexanes. J Am Chem Soc 69(10):2488–2495

  56. Pitzer KS, Scott DW (1943) The thermodynamics and molecular structure of benzene and its methyl derivatives. J Am Chem Soc 65(5):803–829

  57. Finke HL, Scott DW, Gross ME, Messerly GF, Waddington G (1956) Cycloheptane,cycloöctane and 1,3,5-cycloheptatriene. Low temperature thermal properties, vapor pressure and derived chemical thermodynamic properties. J Am Chem Soc 78(21):5469–5476

  58. Scott DW (1974) Correlation of the chemical thermodynamic properties of alkane hydrocarbons. J Chem Phys 60(8):3144–3165

  59. Messerly JF, Todd SS, Finke HL (1965) Low-temperature thermodynamic properties of n-propyl- and n-butylbenzene. J Phys Chem 69(12):4304–4311

  60. Frenkel M Kabo GJ Mash KN, Roganov GM (1994) Wilhoit, Thermodynamics of organic compounds in the Gas State, Ed

  61. Stull DR, Jr (1969) The Chemical Thermodynamics of oganic compounds. Wiley, New York

  62. Yaws C (2009) Yaws’ handbook of thermodynamic properties for hydrocarbons and chemicals; Knovel: http://www.knovel.com

Download references

Acknowledgments

Edimilson S. Moraes, Gustavo F. Reis, Klaus Cozzolino, Abel F. G. Neto, and Antonio M. J. C. Neto thank the Faculty of Physics/ICEN, PROAD/UFPA, and PROPESP/UFPA for their support. Jorddy N. Cruz and Antonio M. J. C. Neto thank CNPq and CAPES for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio M. J. C. Neto.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraes, E.S., Reis, G.F., Cruz, J. et al. Thermodynamics study of biokerosene from coconut and palm kernel oils and JP-8 aircraft fuels in the gas phase by the DFT method. J Mol Model 26, 79 (2020). https://doi.org/10.1007/s00894-020-4327-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4327-6

Keywords

Navigation