Skip to main content
Log in

Experimental and theoretical studies of electrochemical oxidation of nicotinamide adenine dinucleotide at the modified SWCNT and graphene oxide

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In recent years, nicotinamide adenine dinucleotide (NADH) and its oxidized form (NAD+) have withdrawn a substantial attention since they possess a significant place in both biosensor and biofuel cell studies. However, the transformation of NADH to NAD+ brings about the surface passivation and fouling at the most of corresponding conductive materials; consequently, significant decrease takes place in the current. In order to overcome these drawbacks, we have performed the surface functionalization of single-walled carbon nanotube (SWCNT) and graphene oxide (GO) immobilized onto glassy carbon surface with dihydroxybenzene (di-HB) using solid-phase synthesis methodology. The di-HB-modified SWCNT and GO were found to exhibit great catalytic activity as they reduce required overpotential of electrochemical oxidation of NADH and lead to enhancement in the peak current, compared with unmodified carbon electrodes. Molecular docking simulation technique was also carried out to enlighten attained experimental findings in detail, and we have found that increase in the binding affinity of NAD+ to functionalized carbon surfaces with di-HB is related to formation of hydrogen bonding interactions Furthermore, our experimental and theoretical outputs were also found to be quite consistent in terms of reactivity of modified surfaces to NADH oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gorton L (1986) Chemically modified electrodes for the electrocatalytic oxidation of nicotinamide coenzymes. J Chem Soc, Faraday Trans 1: Phys Chem Condens Phases 82:1245–1258. https://doi.org/10.1039/F19868201245

    Article  CAS  Google Scholar 

  2. Gorton L, Domınguez E (2002) Electrocatalytic oxidation of NAD(P)H at mediator-modified electrodes. Rev Mol Biotechnol 82:371–392. https://doi.org/10.1016/S1389-0352(01)00053-8

    Article  CAS  Google Scholar 

  3. Bartlett PN (2008) Bioelectrochemistry: fundamentals, experimental techniques and applications. John Wiley & Sons, Chichester

    Book  Google Scholar 

  4. Banks CE, Compton RG (2005) Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. Analyst 130:1232–1239. https://doi.org/10.1039/B508702C

    Article  CAS  PubMed  Google Scholar 

  5. Gao F, Yan Y, Su L, Wang L, Mao L (2007) An enzymatic glucose/O2 biofuel cell: preparation, characterization and performance in serum. Electrochem Commun 9:989–996. https://doi.org/10.1016/j.elecom.2006.12.008

    Article  CAS  Google Scholar 

  6. Pérez B, del Valle M, Alegret S, Merkoçi A (2007) Carbon nanofiber vs. carbon microparticles as modifiers of glassy carbon and gold electrodes applied in electrochemical sensing of NADH. Talanta 74:398–404. https://doi.org/10.1016/j.talanta.2007.10.022

    Article  CAS  PubMed  Google Scholar 

  7. Pumera M (2009) The electrochemistry of carbon nanotubes: fundamentals and applications. Chem Eur J 15:4970–4978. https://doi.org/10.1002/chem.200900421

    Article  CAS  PubMed  Google Scholar 

  8. Pumera M, Scipioni R, Iwai H, Ohno T, Miyahara Y, Boero M (2009) A mechanism of adsorption of β-nicotinamide adenine dinucleotide on graphene sheets: experiment and theory. Chem Eur J 15:10851–10856. https://doi.org/10.1002/chem.200900399

    Article  CAS  PubMed  Google Scholar 

  9. Ghanem MA, Chrétien J-M, Kilburn JD, Bartlett PN (2009) Electrochemical and solid-phase synthetic modification of glassy carbon electrodes with dihydroxybenzene compounds and the electrocatalytic oxidation of NADH. Bioelectrochem 76:115–125. https://doi.org/10.1016/j.bioelechem.2009.02.008

    Article  CAS  Google Scholar 

  10. Maleki A, Nematollahi D, Clausmeyer J, Henig J, Plumeré N, Schuhmann W (2012) Electrodeposition of catechol on glassy carbon electrode and its electrocatalytic activity toward NADH oxidation. Electroanal 24:1932–1936. https://doi.org/10.1002/elan.201200251

    Article  CAS  Google Scholar 

  11. Matsue T, Suda M, Uchida I, Kato T, Akiba U, Osa T (1987) Electrocatalytic oxidation of NADH by ferrocene derivatives and the influence of cyclodextrin complexation. J Electroanal Chem Interfacial Electrochem 234:163–173. https://doi.org/10.1016/0022-0728(87)80169-9

    Article  CAS  Google Scholar 

  12. Pinczewska A, Sosna M, Bloodworth S, Kilburn JD, Bartlett PN (2012) High-throughput synthesis and electrochemical screening of a library of modified electrodes for NADH oxidation. J Am Chem Soc 134:18022–18033. https://doi.org/10.1021/ja307390x

    Article  CAS  PubMed  Google Scholar 

  13. Scipioni R, Pumera M, Boero M, Miyahara Y, Ohno T (2010) Investigation of the mechanism of adsorption of β-nicotinamide adenine dinucleotide on single-walled carbon nanotubes. J Phys Chem Lett 1:122–125. https://doi.org/10.1021/jz9000714

    Article  CAS  Google Scholar 

  14. Chrétien J-M, Ghanem MA, Bartlett PN, Kilburn JD (2008) Covalent tethering of organic functionality to the surface of glassy carbon electrodes by using electrochemical and solid-phase synthesis methodologies. Chem Eur J 14:2548–2556. https://doi.org/10.1002/chem.200701559

    Article  PubMed  Google Scholar 

  15. Ghanem MA, Chrétien J-M, Pinczewska A, Kilburn JD, Bartlett PN (2008) Covalent modification of glassy carbon surface with organic redox probes through diamine linkers using electrochemical and solid-phase synthesis methodologies. J Mater Chem 18:4917–4927. https://doi.org/10.1039/B809040H

    Article  CAS  Google Scholar 

  16. Ghanem MA, Kocak I, Al-Mayouf A, AlHoshan M, Bartlett PN (2012) Covalent modification of carbon nanotubes with anthraquinone by electrochemical grafting and solid phase synthesis. Electrochim Acta 68:74–80. https://doi.org/10.1016/j.electacta.2012.02.027

    Article  CAS  Google Scholar 

  17. Ghanem MA, Kocak I, Al-Mayouf A, Bartlett PN (2013) Solid phase modification of carbon nanotubes with anthraquinone and nitrobenzene functional groups. Electrochem Commun 34:258–262. https://doi.org/10.1016/j.elecom.2013.05.039

    Article  CAS  Google Scholar 

  18. Manikandan A, Sathiyabama M (2015) Green synthesis of copper-chitosan nanoparticles and study of its antibacterial activity. J Nanomed Nanotech 6:1–4. https://doi.org/10.4172/2157-7439.1000251

    Article  CAS  Google Scholar 

  19. Shahriary L, Athawale A (2014) Graphene oxide synthesized by using modified hummers approach. Int J Renew Energy Environ Eng 2:58–63

    Google Scholar 

  20. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminformatics 4:17. https://doi.org/10.1186/1758-2946-4-17

    Article  CAS  Google Scholar 

  21. Delano WL (2002) The PyMOL Molecular Graphics System. http://www.pymol.org

  22. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Solis FJ, Wets RJ-B (1981) Minimization by random search techniques. J Math Oper Res 6:19–30. https://doi.org/10.1287/moor.6.1.19

    Article  Google Scholar 

  24. Biovia DS (2017) Discovery studio modeling environment. Dassault Systèmes, San Diego

    Google Scholar 

  25. Chrétien J-M, Ghanem MA, Bartlett PN, Kilburn JD (2009) Covalent modification of glassy carbon surfaces by using electrochemical and solid-phase synthetic methodologies: application to bi- and trifunctionalisation with different redox centres. Chem Eur J 15:11928–11936. https://doi.org/10.1002/chem.200901135

    Article  CAS  PubMed  Google Scholar 

  26. Baez DF, Tapia F, Sierra-Rosales P, Bollo S (2018) In situ electroreduction of graphene oxide: increased sensitivity for the determination of NADH. Electroanalysis 30:1–8. https://doi.org/10.1002/elan.201800629

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Zonguldak Bülent Ecevit University Faculty of Pharmacy and Science and Art for allowing to use facilities of faculties.

Funding

This study received financial support from Zonguldak Bülent Ecevit University Faculty of Pharmacy and Science and Art.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İzzet Koçak.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 864 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koçak, İ., Alıcı, H. Experimental and theoretical studies of electrochemical oxidation of nicotinamide adenine dinucleotide at the modified SWCNT and graphene oxide. J Mol Model 26, 51 (2020). https://doi.org/10.1007/s00894-020-4314-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4314-y

Keywords

Navigation