Skip to main content
Log in

Theoretical study on water adsorption and dissociation on the nickel surfaces

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Using density functional theory methods, H2O dissociation was investigated on the Ni(111), Ni(100), and Ni(110) surfaces. H and O atom as well as OH species adsorb stably at the high coordination sites. While on the Ni(110) surface, the OH species prefers at the twofold short bridge site because the adsorption on the fourfold hollow site is less feasible due to the increased distances between the nickel atoms. The amount of charge transfer is related to the adsorption stability. The more charge transfer, the more stable the adsorption. The charge transfer decreases in the order of O > OH > H. H2O molecule adsorbs at the top site in a configuration parallel to the surface. The final products are different for H2O dissociation due to the different mechanisms. On the Ni(111) surface, the final product is the O atom. On the Ni(100) and Ni(110) surfaces, the most abundant species are OH and H, but the reaction mechanisms were different. It is not necessary to linear BEP relationship for a given reaction on different surfaces. These results could provide fundamental insights into water behaviors and a favorable theoretical basis for further understanding and research on the interaction between water and metal surfaces.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The manuscript has full control of all primary data, and the authors agree to allow the journal to review their data if requested.

References

  1. Hodgson A, Haq S (2009). Surf Sci Rep 64:381–451

    Article  CAS  Google Scholar 

  2. Roy S, Nayanthara KJ, Tiwari N, Tiwari AK (2020). Int Rev Phys Chem 39:267–318

    Article  CAS  Google Scholar 

  3. Wang G, Tao S, Bu X (2006). J Catal 224:10–16

    Article  Google Scholar 

  4. Benndorf C, Nöbl C, Rusenberg M, Thieme F (1981). Surf Sci 111:87–101

    Article  CAS  Google Scholar 

  5. Benndorf C, Nöbl C, Thieme F (1982). Surf Sci 121:249–259

    Article  CAS  Google Scholar 

  6. Peebles DE, White JM (1984). Surf Sci 144:512–540

    Article  CAS  Google Scholar 

  7. Jacobi K, Rotermund HH (1983). Surf Sci 133:401–421

    Article  CAS  Google Scholar 

  8. Siepmann JI, Sprik M (1992). Surf Sci 279:185–190

    Article  Google Scholar 

  9. Pangher N, Schmalz A, Haase J (1994). Chem Phys Lett 221:189–193

    Article  CAS  Google Scholar 

  10. Callen BW, Griffiths K, Memmert U, Harrington DA, Bushby SJ, Norton PR (1990). Surf Sci 230:159–174

    Article  CAS  Google Scholar 

  11. Callen BW, Griffiths K, Kasza RV, Jensen MB, Thiel PA, Norton PR (1992). J Chem Phys 97:3760–3774

    Article  CAS  Google Scholar 

  12. Pirug G, Knauff O, Bonzel HP (1994). Surf Sci 321:58–70

    Article  CAS  Google Scholar 

  13. Benndorf C, Madey TE (1988). Surf Sci 194:63–91

    Article  CAS  Google Scholar 

  14. Roy S, Nayanthara KJ, Tiwari AK (2019). J Indian Chem Soc 96:883–893

    CAS  Google Scholar 

  15. Nakamura M, Ito M (2004). Chem Phys Lett 384:256–261

    Article  CAS  Google Scholar 

  16. Pozzo M, Carlini G, Rosei R, Alfè D (2007). J Chem Phys 126:164706

    Article  PubMed  Google Scholar 

  17. Catapan RC, Oliveira AAM, Chen Y, Vlachos DG (2012). J Phys Chem C 116:20281–20291

    Article  CAS  Google Scholar 

  18. Hariharan S, Tiwari AK (2013). J Chem Phys 139:174707

    Article  Google Scholar 

  19. Murakhtina T, Delle Site L, Sebastiani D (2006). Chem Phys Chem 7:1215–1219

    Article  CAS  PubMed  Google Scholar 

  20. Kresse G, Furthmüller J (1996). Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  21. Kresse G, Furthmüller J (1996). Phys Rev B Condens Matter 54:11169–11186

    Article  CAS  PubMed  Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  23. Henkelman G, Uberuaga BP, Jónsson H (2000). J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  24. Monkhorst HJ, Pack JD (1976). Phys Rev B 13:5188–5192

    Article  Google Scholar 

  25. 71CRC (2013) In: Haynes WM (ed) Handbook of Chemistry and Physics. CRC Press, New York

    Google Scholar 

  26. Liu T, Chen J, Zhang Z, Shen X, Fu B, Zhang DH (2018). J Chem Phys 148:144705

    Article  PubMed  Google Scholar 

  27. Liu SL, Tian XX, Wang T, Wen XD, Li YW, Wang JG, Jiao H (2014). J Phys Chem C 118:26139–26154

    Article  CAS  Google Scholar 

  28. Gao R, Cao DB, Liu SL, Wang J, Li YW, Jiao H (2013). Appl Catal A 468:370–384

    Article  CAS  Google Scholar 

  29. Paul JF, Sautet P (1996). Surf Sci 356:1–3

    Article  Google Scholar 

  30. Yang H, Whitten JL (1997). Surf Sci 370:136

    Article  CAS  Google Scholar 

  31. Michaelides A, Hu PA (2000). J Chem Phys 112:8120–8125

    Article  CAS  Google Scholar 

  32. Kresse G, Hafner J (2000). Surf Sci 459:0–302

    Article  Google Scholar 

  33. Greeley J, Mavrikakis M (2017). J Phys Chem B 109:3460

    Article  Google Scholar 

  34. Hariharan S, Tiwari AK (2014). J Chem Phys 140:174704

    Article  Google Scholar 

  35. Gan L, Tian R, Yang X, Lu H, Zhao Y (2012). J Phys Chem C 116:745–752

    Article  CAS  Google Scholar 

  36. Huang Y, Ling C, Jin M, Du J, Zhou T, Wang S (2013). Phys Chem Chem Phys 15:17804–17817

    Article  CAS  PubMed  Google Scholar 

  37. Bronsted JN (1928). Chem Rev 5:231–338

    Article  CAS  Google Scholar 

  38. Evans MG, Polanyi M (1938). Trans Faraday Soc 34:11

    Article  CAS  Google Scholar 

  39. Liu SL, Li YW, Wang J, Jiao H (2017). Catal Sci Technol 7:427–440

    Article  CAS  Google Scholar 

  40. Munter TR, Bligaard T, Christensen CH, Nørskov JK (2008). Phys Chem Chem Phys 10:5202

    Article  CAS  PubMed  Google Scholar 

  41. Liu ZP, Hu P (2001). J Chem Phys 114:8244

    Article  CAS  Google Scholar 

  42. Liu ZP, Hu P (2001). J Am Chem Soc 123:12596

    Article  CAS  PubMed  Google Scholar 

  43. Michaelides A, Liu ZP, Zhang CJ, Alavi A, King DA, Hu P (2003). J Am Chem Soc 125:3704

    Article  CAS  PubMed  Google Scholar 

  44. Fajin JLC, Cordeiro MNDS, Gomes JRB (2016). RSC Adv 6:18695–18702

    Article  CAS  Google Scholar 

  45. Roy S, Hariharan S, Tiwari AKP (2018). Phys Chem C 122:10857–10870

    Article  CAS  Google Scholar 

  46. Wang S, Petzold V, Tripkovic V, Kleis J et al (2011). Phys Chem Chem Phys 13:20760–20765

    Article  CAS  PubMed  Google Scholar 

  47. Ghosh S, Hariharan S, Tiwari AK (2017). J Phys Chem C 121:16351–16365

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21803052), and Natural science foundation of Shandong province (No. ZR2018LB017). The grants are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Xuejie Hou: formal analysis, investigation, writing original draft; Lingxi Qi: data curation and editing; Wenzuo Li: conceptualization, supervision; Jin Zhao: methodology, visualization; Shaoli Liu: review, editing, and modification.

Corresponding authors

Correspondence to Wenzuo Li or Shaoli Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

Obtained the informed consent of all participants.

Code availability

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, X., Qi, L., Li, W. et al. Theoretical study on water adsorption and dissociation on the nickel surfaces. J Mol Model 27, 36 (2021). https://doi.org/10.1007/s00894-020-04662-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04662-4

Keywords

Navigation