The redox potential of flavin derivatives as a mediator in biosensors

Abstract

The two-electron reduction potential for a set of 393 flavin derivatives is presented in this article. These derivatives are substituted flavin on carbon 6, 7, 8, and 9 by coinage transition metals (Cu, Ag, and Au) and conjugated double bond hydrocarbons; and both groups are examined with and without functional groups such as OH, Cl, CH3, COOH, and NO2. In order to show the validity of the results, the reduction potential of human life molecules, which have experimental values, such as flavin adenine dinucleotide (FAD) and riboflavin (vitamin B2) is calculated. The experimental value for FAD is − 0.22 V, while the obtained theoretical value is − 0.21 V, and the corresponding values for riboflavin are − 0.18 and − 0.19 V, respectively. Theoretical calculations have been carried out by DFT procedure with a 6-31+G** basis set and BLYP xc-functional for coinage transition metals substitution, and MPW1PW9 xc-functionals for conjugated double bond hydrocarbon substitution. Both xc-functionals are chosen by the DFT calibration procedure.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

N/A

Code availability

N/A

References

  1. 1.

    Hammett LP (1937) The effect of structure upon the reactions of organic compounds. Benzene derivatives. J. Am. Chem. Soc. 59(1):96–103

    CAS  Google Scholar 

  2. 2.

    Hammett L (1961) Physical Organic Chemistry’McGraw-Hill Inc., New York, 1940. C Döring and H Gehlen. Z. Anorg. Allg. Chem. 312(32):294

    Google Scholar 

  3. 3.

    Cyranski MK, Krygowski TM, Katritzky AR, Schleyer PR (2002) To what extent can aromaticity be defined uniquely? J Org Chem 67(4):1333–1338

    CAS  PubMed  Google Scholar 

  4. 4.

    von Schleyer PR, Jiao H (1996) What is aromaticity? Pure Appl. Chem. 68(2):209–218

    CAS  Google Scholar 

  5. 5.

    Remya GS, Suresh CH (2018) Assessment of the electron donor properties of substituted phenanthroline ligands in molybdenum carbonyl complexes using molecular electrostatic potentials. New J. Chem. 42(5):3602–3608

    CAS  Google Scholar 

  6. 6.

    Anjali BA, Suresh CH (2018) Predicting reduction potentials of 1, 3, 6-triphenyl fulvenes using molecular electrostatic potential analysis of substituent effects. J. Comput. Chem. 39(15):881–888

    CAS  PubMed  Google Scholar 

  7. 7.

    Remya GS, Suresh CH (2016) Quantification and classification of substituent effects in organic chemistry: a theoretical molecular electrostatic potential study. PCCP 18(30):20615–20626

    CAS  PubMed  Google Scholar 

  8. 8.

    Truhlar DG, Cramer CJ, Lewis A, Bumpus JA (2004) Molecular modeling of environmentally important processes: reduction potentials. J. Chem. Educ. 81(4):596–934

    Google Scholar 

  9. 9.

    Andrea M (2008) Marcus theory for electron transfer a short introduction. MPIP Journal Club-Mainz

  10. 10.

    Krishnan V (1997) Electron transfer in chemistry and biology—the primary events in photosynthesis. Resonance 2(12):77–86

    CAS  Google Scholar 

  11. 11.

    Tiquia-Arashiro SM (2014) Thermophilic carboxydotrophs and their applications in biotechnology. Springer

  12. 12.

    Reynolds CA (1990) Theoretical electrode potentials and conformational energies of benzoquinones and naphthoquinones in aqueous solution. J. Am. Chem. Soc. 112(21):7545–7551

    CAS  Google Scholar 

  13. 13.

    Rzepa HS, Suñer GA (1993) Theoretical calculations of benzoquinone redox potentials using the COSMO continuum solvation model. J Chem Soc., Chem Commun (23):1743–1744

  14. 14.

    Benassi R, Ferrarini P, Fontanesi C, Benedetti L, Paolucci F (2004) Calculated electron affinities and redox E0 values of polypyridinic derivatives. J. Electroanal. Chem. 564:231–237

    CAS  Google Scholar 

  15. 15.

    Eslami M, Namazian M, Zare HR (2013) Electrooxidation of homogentisic acid in aqueous and mixed solvent solutions: experimental and theoretical studies. J. Phys. Chem. B 117(9):2757–2763

    CAS  PubMed  Google Scholar 

  16. 16.

    Eslami M, Zare HR, Namazian M (2012) Thermodynamic parameters of electrochemical oxidation of L-DOPA: experimental and theoretical studies. J. Phys. Chem. B 116(41):12552–12557

    CAS  PubMed  Google Scholar 

  17. 17.

    Jalali-Heravi M, Namazian M (1997) Optimization of the cavity size for AM1-SCRF calculations of electrode potentials in aqueous solution. J. Electroanal. Chem. 425(1–2):139–146

    CAS  Google Scholar 

  18. 18.

    Jalali-Heravi M, Namazian M, Peacock T (1995) Theoretical studies of electrode potentials in aqueous solution. Investigation of individual contributions from electrostatic, cavity and dispersion interactions to redox potentials. J. Electroanal. Chem. 385(1):1–8

    Google Scholar 

  19. 19.

    Namazian M, Lin CY, Coote ML (2010) Benchmark calculations of absolute reduction potential of ferricinium/ferrocene couple in nonaqueous solutions. J. Chem. Theory Comput. 6(9):2721–2725

    CAS  PubMed  Google Scholar 

  20. 20.

    Zare HR, Eslami M, Namazian M, Coote ML (2009) Experimental and theoretical studies of redox reactions of o-chloranil in aqueous solution. J. Phys. Chem. B 113(23):8080–8085

    CAS  PubMed  Google Scholar 

  21. 21.

    Walsh JD, Miller A-F (2003) Flavin reduction potential tuning by substitution and bending. J Mol Struct.: THEOCHEM 623(1–3):185–195

    CAS  Google Scholar 

  22. 22.

    Fu Y, Liu L, Yu H-Z, Wang Y-M, Guo Q-X (2005) Quantum-chemical predictions of absolute standard redox potentials of diverse organic molecules and free radicals in acetonitrile. J. Am. Chem. Soc. 127(19):7227–7234

    CAS  PubMed  Google Scholar 

  23. 23.

    Li X-L, Fu Y (2008) Theoretical study of reduction potentials of substituted flavins. J Mol Struct.: THEOCHEM 856 (1–3):112–118

  24. 24.

    Möbius K, Arias-Cartin R, Breckau D, Hännig A-L, Riedmann K, Biedendieck R, Schröder S, Becher D, Magalon A, Moser J (2010) Heme biosynthesis is coupled to electron transport chains for energy generation. Proc. Natl. Acad. Sci. 107(23):10436–10441

    PubMed  Google Scholar 

  25. 25.

    Steele HM, Guillaumont D, Moisy P (2013) Density functional theory calculations of the redox potentials of actinide (VI)/actinide (V) couple in water. J. Phys. Chem. A 117(21):4500–4505

    CAS  PubMed  Google Scholar 

  26. 26.

    Bhattacharyya S, Stankovich MT, Truhlar DG, Gao J (2007) Combined quantum mechanical and molecular mechanical simulations of one-and two-electron reduction potentials of flavin cofactor in water, medium-chain acyl-CoA dehydrogenase, and cholesterol oxidase. J. Phys. Chem. A 111(26):5729–5742

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Jaque P, Marenich AV, Cramer CJ, Truhlar DG (2007) Computational electrochemistry: the aqueous Ru3+| Ru2+ reduction potential. J. Phys. Chem. C 111(15):5783–5799

    CAS  Google Scholar 

  28. 28.

    Konezny SJ, Doherty MD, Luca OR, Crabtree RH, Soloveichik GL, Batista VS (2012) Reduction of systematic uncertainty in DFT redox potentials of transition-metal complexes. J. Phys. Chem. C 116(10):6349–6356

    CAS  Google Scholar 

  29. 29.

    VandeVondele J, Ayala R, Sulpizi M, Sprik M (2007) Redox free energies and one-electron energy levels in density functional theory based ab initio molecular dynamics. J. Electroanal. Chem. 607(1–2):113–120

    CAS  Google Scholar 

  30. 30.

    K-i S, Nagahara K, Yoshii Y, Hoshino N, Akutagawa T (2013) Structural and spectroscopic study of 6, 7-dicyano-substituted lumazine with high electron affinity and proton acidity. J. Phys. Chem. A 117(17):3614–3624

    Google Scholar 

  31. 31.

    Muller F (2018) Free flavins: syntheses, chemical and physical properties. Chemistry and biochemistry of flavoenzymes. CRC Press, pp 9–80

  32. 32.

    Niemz A, Imbriglio J, Rotello VM (1997) Model systems for flavoenzyme activity: one-and two-electron reduction of flavins in aprotic hydrophobic environments. J. Am. Chem. Soc. 119(5):887–892

    CAS  Google Scholar 

  33. 33.

    Vidal J-C, Espuelas J, Castillo J-R (2004) Amperometric cholesterol biosensor based on in situ reconstituted cholesterol oxidase on an immobilized monolayer of flavin adenine dinucleotide cofactor. Anal. Biochem. 333(1):88–98

    CAS  PubMed  Google Scholar 

  34. 34.

    Yehezkeli O, Tel-Vered R, Raichlin S, Willner I (2011) Nano-engineered flavin-dependent glucose dehydrogenase/gold nanoparticle-modified electrodes for glucose sensing and biofuel cell applications. ACS Nano 5(3):2385–2391

    CAS  PubMed  Google Scholar 

  35. 35.

    Bourigua S, El Ichi S, Korri-Youssoufi H, Maaref A, Dzyadevych S, Renault NJ (2011) Electrochemical sensing of trimethylamine based on polypyrrole–flavin-containing monooxygenase (FMO3) and ferrocene as redox probe for evaluation of fish freshness. Biosens. Bioelectron. 28(1):105–111

    CAS  PubMed  Google Scholar 

  36. 36.

    Hasford JJ, Rizzo CJ (1998) Linear free energy substituent effect on flavin redox chemistry. J. Am. Chem. Soc. 120(10):2251–2255

    CAS  Google Scholar 

  37. 37.

    Legrand Y-M, Gray M, Cooke G, Rotello VM (2003) Model systems for flavoenzyme activity: relationships between cofactor structure, binding and redox properties. J. Am. Chem. Soc. 125(51):15789–15795

    CAS  PubMed  Google Scholar 

  38. 38.

    Gray M, Goodman AJ, Carroll JB, Bardon K, Markey M, Cooke G, Rotello VM (2004) Model systems for flavoenzyme activity: interplay of hydrogen bonding and aromatic stacking in cofactor redox modulation. Org. Lett. 6(3):385–388

    CAS  PubMed  Google Scholar 

  39. 39.

    Cooke G, Duclairoir FM, John P, Polwart N, Rotello VM (2003) Model systems for flavoenzyme activity: flavin-functionalised SAMs as models for probing redox modulation through hydrogen bonding. Chem. Commun. 19:2468–2469

    Google Scholar 

  40. 40.

    Greaves M, Galow T, Rotello V (1999) Model systems for flavoenzyme activity: aromatic stacking in sol-gel matrices. Chem. Commun. 2:169–170

    Google Scholar 

  41. 41.

    Cooke G, Legrand Y-M, Rotello VM (2004) Model systems for flavoenzyme activity: an electrochemically tuneable model of roseoflavin. Chem. Commun. 9:1088–1089

    Google Scholar 

  42. 42.

    Boyd AS, Carroll JB, Cooke G, Garety JF, Jordan BJ, Mabruk S, Rosair G, Rotello VM (2005) Model systems for flavoenzyme activity: a tuneable intramolecularly hydrogen bonded flavin–diamidopyridine complex. Chem. Commun. 19:2468–2470

    Google Scholar 

  43. 43.

    Cuello AO, McIntosh CM, Rotello VM (2000) Model systems for flavoenzyme activity. The role of N(3)−H hydrogen bonding in flavin redox processes. J. Am. Chem. Soc. 122(14):3517–3521

    CAS  Google Scholar 

  44. 44.

    Niemz A, Rotello VM (1996) Model systems for flavoenzyme activity. The effects of specific hydrogen bonds on the 13C and 1H NMR of flavins. J. Mol. Recognit. 9(2):158–162

    CAS  PubMed  Google Scholar 

  45. 45.

    Deans R, Cooke G, Rotello VM (1997) Model systems for flavoenzyme activity. Regulation of flavin recognition via modulation of receptor hydrogen-bond donor− acceptor properties. J Org Chem 62(4):836–839

    CAS  Google Scholar 

  46. 46.

    Deans R, Rotello VM (1997) Model systems for flavoenzyme activity. Molecular recognition of flavin at the polymer− liquid interface. J Org Chem 62(13):4528–4529

    CAS  PubMed  Google Scholar 

  47. 47.

    Breinlinger EC, Rotello VM (1997) Model systems for flavoenzyme activity. Modulation of flavin redox potentials through π-stacking interactions. J. Am. Chem. Soc. 119(5):1165–1166

    CAS  Google Scholar 

  48. 48.

    Goodman AJ, Breinlinger EC, McIntosh CM, Grimaldi LN, Rotello VM (2001) Model systems for flavoenzyme activity. Control of flavin recognition via specific electrostatic interactions. Org. Lett. 3(10):1531–1534

    CAS  PubMed  Google Scholar 

  49. 49.

    Dutra JK, Cuello AO, Rotello VM (1997) Model systems for flavoenzyme activity. A versatile synthesis of N(3)-alkylated flavins. Tetrahedron Lett. 38(23):4003–4004

    CAS  Google Scholar 

  50. 50.

    Deans R, Rotello VM (1996) Model systems for flavoenzyme activity. 2-Aminopyridines as spectroscopic models for flavoenzyme active sites. Tetrahedron Lett. 37(26):4435–4438

    CAS  Google Scholar 

  51. 51.

    Greaves MD, Rotello VM (1997) Model systems for flavoenzyme activity. Specific hydrogen bond recognition of flavin in a silicate sol-gel. J. Am. Chem. Soc. 119(44):10569–10572

    CAS  Google Scholar 

  52. 52.

    Rodríguez-Otero J, Martínez-Núñez E, Peña-Gallego A, Vázquez SA (2002) The role of aromaticity in the planarity of lumiflavin. J Org Chem. 67(18):6347–6352

    PubMed  Google Scholar 

  53. 53.

    García JI, Medina M, Sancho J, Alonso PJ, Gomez-Moreno C, Mayoral JA, Martínez JI (2002) Theoretical analysis of the electron spin density distribution of the flavin semiquinone isoalloxazine ring within model protein environments. J. Phys. Chem. A 106(18):4729–4735

    Google Scholar 

  54. 54.

    Lee E, Medvedev ES, Stuchebrukhov AA (2000) Calculation of quantum parameters for nonadiabatic redox reactions. Application to photoreduction of flavin in DNA photolyase. J. Phys. Chem. B 104(29):6894–6902

    CAS  Google Scholar 

  55. 55.

    Dmitrenko O, Thorpe C, Bach RD (2003) Effect of a charge-transfer interaction on the catalytic activity of acyl-CoA dehydrogenase: a theoretical study of the role of oxidized flavin. J. Phys. Chem. B 107(47):13229–13236

    CAS  Google Scholar 

  56. 56.

    North MA, Bhattacharyya S, Truhlar DG (2010) Improved density functional description of the electrochemistry and structure− property descriptors of substituted flavins. J. Phys. Chem. B 114(46):14907–14915

    CAS  PubMed  Google Scholar 

  57. 57.

    Schultz NE, Zhao Y, Truhlar DG (2005) Databases for transition element bonding: metal−metal bond energies and bond lengths and their use to test hybrid, hybrid meta, and meta density functionals and generalized gradient approximations. J. Phys. Chem. A 109(19):4388–4403

    CAS  PubMed  Google Scholar 

  58. 58.

    Pakiari AH, Pahlavan F (2014) The electronic structures of small Nin (n=2–4) clusters and their interactions with ethylene and triplet oxygen: a theoretical study. ChemPhysChem 15(18):4055–4066

    CAS  PubMed  Google Scholar 

  59. 59.

    Pakiari AH, Shariati S (2016) Geometry and electronic structure of ultrafine/nanoparticle chromium clusters (Crn, n=2–5) and their interaction with oxygen (triplet) and ethylene molecules: a DFT–NBO study. Comput. Theor. Chem. 1084:169–178

    CAS  Google Scholar 

  60. 60.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.01. Wallingford CT. doi:citeulike-article-id:9096580

  61. 61.

    Stankovich MT (1991) Redox properties of flavins and flavoproteins. Chemistry and biochemistry of flavoenzymes 1:401–425

    CAS  Google Scholar 

  62. 62.

    Blaedel W, Jenkins RA (1975) Electrochemical oxidation of reduced nicotinamide adenine dinucleotide. Anal. Chem. 47(8):1337–1343

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

A.H. Pakiari designed the project. M. Salarhaji, T. Abdollahi, and M. Safapour performed the theoretical calculations and analyzed the data. A.H. Pakiari and M. Salarhaji wrote the paper.

Corresponding author

Correspondence to A. H. Pakiari.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

N/A

Consent to participate

N/A

Consent for publication

N/A

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 391 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pakiari, A.H., Salarhaji, M., Abdollahi, T. et al. The redox potential of flavin derivatives as a mediator in biosensors. J Mol Model 27, 96 (2021). https://doi.org/10.1007/s00894-020-04650-8

Download citation

Keywords

  • Flavins
  • Reduction potential
  • Biosensor
  • Mediator
  • Density functional theory