Abstract
The two-electron reduction potential for a set of 393 flavin derivatives is presented in this article. These derivatives are substituted flavin on carbon 6, 7, 8, and 9 by coinage transition metals (Cu, Ag, and Au) and conjugated double bond hydrocarbons; and both groups are examined with and without functional groups such as OH, Cl, CH3, COOH, and NO2. In order to show the validity of the results, the reduction potential of human life molecules, which have experimental values, such as flavin adenine dinucleotide (FAD) and riboflavin (vitamin B2) is calculated. The experimental value for FAD is − 0.22 V, while the obtained theoretical value is − 0.21 V, and the corresponding values for riboflavin are − 0.18 and − 0.19 V, respectively. Theoretical calculations have been carried out by DFT procedure with a 6-31+G** basis set and BLYP xc-functional for coinage transition metals substitution, and MPW1PW9 xc-functionals for conjugated double bond hydrocarbon substitution. Both xc-functionals are chosen by the DFT calibration procedure.
Graphical abstract

This is a preview of subscription content, access via your institution.







Data availability
N/A
Code availability
N/A
References
- 1.
Hammett LP (1937) The effect of structure upon the reactions of organic compounds. Benzene derivatives. J. Am. Chem. Soc. 59(1):96–103
- 2.
Hammett L (1961) Physical Organic Chemistry’McGraw-Hill Inc., New York, 1940. C Döring and H Gehlen. Z. Anorg. Allg. Chem. 312(32):294
- 3.
Cyranski MK, Krygowski TM, Katritzky AR, Schleyer PR (2002) To what extent can aromaticity be defined uniquely? J Org Chem 67(4):1333–1338
- 4.
von Schleyer PR, Jiao H (1996) What is aromaticity? Pure Appl. Chem. 68(2):209–218
- 5.
Remya GS, Suresh CH (2018) Assessment of the electron donor properties of substituted phenanthroline ligands in molybdenum carbonyl complexes using molecular electrostatic potentials. New J. Chem. 42(5):3602–3608
- 6.
Anjali BA, Suresh CH (2018) Predicting reduction potentials of 1, 3, 6-triphenyl fulvenes using molecular electrostatic potential analysis of substituent effects. J. Comput. Chem. 39(15):881–888
- 7.
Remya GS, Suresh CH (2016) Quantification and classification of substituent effects in organic chemistry: a theoretical molecular electrostatic potential study. PCCP 18(30):20615–20626
- 8.
Truhlar DG, Cramer CJ, Lewis A, Bumpus JA (2004) Molecular modeling of environmentally important processes: reduction potentials. J. Chem. Educ. 81(4):596–934
- 9.
Andrea M (2008) Marcus theory for electron transfer a short introduction. MPIP Journal Club-Mainz
- 10.
Krishnan V (1997) Electron transfer in chemistry and biology—the primary events in photosynthesis. Resonance 2(12):77–86
- 11.
Tiquia-Arashiro SM (2014) Thermophilic carboxydotrophs and their applications in biotechnology. Springer
- 12.
Reynolds CA (1990) Theoretical electrode potentials and conformational energies of benzoquinones and naphthoquinones in aqueous solution. J. Am. Chem. Soc. 112(21):7545–7551
- 13.
Rzepa HS, Suñer GA (1993) Theoretical calculations of benzoquinone redox potentials using the COSMO continuum solvation model. J Chem Soc., Chem Commun (23):1743–1744
- 14.
Benassi R, Ferrarini P, Fontanesi C, Benedetti L, Paolucci F (2004) Calculated electron affinities and redox E0 values of polypyridinic derivatives. J. Electroanal. Chem. 564:231–237
- 15.
Eslami M, Namazian M, Zare HR (2013) Electrooxidation of homogentisic acid in aqueous and mixed solvent solutions: experimental and theoretical studies. J. Phys. Chem. B 117(9):2757–2763
- 16.
Eslami M, Zare HR, Namazian M (2012) Thermodynamic parameters of electrochemical oxidation of L-DOPA: experimental and theoretical studies. J. Phys. Chem. B 116(41):12552–12557
- 17.
Jalali-Heravi M, Namazian M (1997) Optimization of the cavity size for AM1-SCRF calculations of electrode potentials in aqueous solution. J. Electroanal. Chem. 425(1–2):139–146
- 18.
Jalali-Heravi M, Namazian M, Peacock T (1995) Theoretical studies of electrode potentials in aqueous solution. Investigation of individual contributions from electrostatic, cavity and dispersion interactions to redox potentials. J. Electroanal. Chem. 385(1):1–8
- 19.
Namazian M, Lin CY, Coote ML (2010) Benchmark calculations of absolute reduction potential of ferricinium/ferrocene couple in nonaqueous solutions. J. Chem. Theory Comput. 6(9):2721–2725
- 20.
Zare HR, Eslami M, Namazian M, Coote ML (2009) Experimental and theoretical studies of redox reactions of o-chloranil in aqueous solution. J. Phys. Chem. B 113(23):8080–8085
- 21.
Walsh JD, Miller A-F (2003) Flavin reduction potential tuning by substitution and bending. J Mol Struct.: THEOCHEM 623(1–3):185–195
- 22.
Fu Y, Liu L, Yu H-Z, Wang Y-M, Guo Q-X (2005) Quantum-chemical predictions of absolute standard redox potentials of diverse organic molecules and free radicals in acetonitrile. J. Am. Chem. Soc. 127(19):7227–7234
- 23.
Li X-L, Fu Y (2008) Theoretical study of reduction potentials of substituted flavins. J Mol Struct.: THEOCHEM 856 (1–3):112–118
- 24.
Möbius K, Arias-Cartin R, Breckau D, Hännig A-L, Riedmann K, Biedendieck R, Schröder S, Becher D, Magalon A, Moser J (2010) Heme biosynthesis is coupled to electron transport chains for energy generation. Proc. Natl. Acad. Sci. 107(23):10436–10441
- 25.
Steele HM, Guillaumont D, Moisy P (2013) Density functional theory calculations of the redox potentials of actinide (VI)/actinide (V) couple in water. J. Phys. Chem. A 117(21):4500–4505
- 26.
Bhattacharyya S, Stankovich MT, Truhlar DG, Gao J (2007) Combined quantum mechanical and molecular mechanical simulations of one-and two-electron reduction potentials of flavin cofactor in water, medium-chain acyl-CoA dehydrogenase, and cholesterol oxidase. J. Phys. Chem. A 111(26):5729–5742
- 27.
Jaque P, Marenich AV, Cramer CJ, Truhlar DG (2007) Computational electrochemistry: the aqueous Ru3+| Ru2+ reduction potential. J. Phys. Chem. C 111(15):5783–5799
- 28.
Konezny SJ, Doherty MD, Luca OR, Crabtree RH, Soloveichik GL, Batista VS (2012) Reduction of systematic uncertainty in DFT redox potentials of transition-metal complexes. J. Phys. Chem. C 116(10):6349–6356
- 29.
VandeVondele J, Ayala R, Sulpizi M, Sprik M (2007) Redox free energies and one-electron energy levels in density functional theory based ab initio molecular dynamics. J. Electroanal. Chem. 607(1–2):113–120
- 30.
K-i S, Nagahara K, Yoshii Y, Hoshino N, Akutagawa T (2013) Structural and spectroscopic study of 6, 7-dicyano-substituted lumazine with high electron affinity and proton acidity. J. Phys. Chem. A 117(17):3614–3624
- 31.
Muller F (2018) Free flavins: syntheses, chemical and physical properties. Chemistry and biochemistry of flavoenzymes. CRC Press, pp 9–80
- 32.
Niemz A, Imbriglio J, Rotello VM (1997) Model systems for flavoenzyme activity: one-and two-electron reduction of flavins in aprotic hydrophobic environments. J. Am. Chem. Soc. 119(5):887–892
- 33.
Vidal J-C, Espuelas J, Castillo J-R (2004) Amperometric cholesterol biosensor based on in situ reconstituted cholesterol oxidase on an immobilized monolayer of flavin adenine dinucleotide cofactor. Anal. Biochem. 333(1):88–98
- 34.
Yehezkeli O, Tel-Vered R, Raichlin S, Willner I (2011) Nano-engineered flavin-dependent glucose dehydrogenase/gold nanoparticle-modified electrodes for glucose sensing and biofuel cell applications. ACS Nano 5(3):2385–2391
- 35.
Bourigua S, El Ichi S, Korri-Youssoufi H, Maaref A, Dzyadevych S, Renault NJ (2011) Electrochemical sensing of trimethylamine based on polypyrrole–flavin-containing monooxygenase (FMO3) and ferrocene as redox probe for evaluation of fish freshness. Biosens. Bioelectron. 28(1):105–111
- 36.
Hasford JJ, Rizzo CJ (1998) Linear free energy substituent effect on flavin redox chemistry. J. Am. Chem. Soc. 120(10):2251–2255
- 37.
Legrand Y-M, Gray M, Cooke G, Rotello VM (2003) Model systems for flavoenzyme activity: relationships between cofactor structure, binding and redox properties. J. Am. Chem. Soc. 125(51):15789–15795
- 38.
Gray M, Goodman AJ, Carroll JB, Bardon K, Markey M, Cooke G, Rotello VM (2004) Model systems for flavoenzyme activity: interplay of hydrogen bonding and aromatic stacking in cofactor redox modulation. Org. Lett. 6(3):385–388
- 39.
Cooke G, Duclairoir FM, John P, Polwart N, Rotello VM (2003) Model systems for flavoenzyme activity: flavin-functionalised SAMs as models for probing redox modulation through hydrogen bonding. Chem. Commun. 19:2468–2469
- 40.
Greaves M, Galow T, Rotello V (1999) Model systems for flavoenzyme activity: aromatic stacking in sol-gel matrices. Chem. Commun. 2:169–170
- 41.
Cooke G, Legrand Y-M, Rotello VM (2004) Model systems for flavoenzyme activity: an electrochemically tuneable model of roseoflavin. Chem. Commun. 9:1088–1089
- 42.
Boyd AS, Carroll JB, Cooke G, Garety JF, Jordan BJ, Mabruk S, Rosair G, Rotello VM (2005) Model systems for flavoenzyme activity: a tuneable intramolecularly hydrogen bonded flavin–diamidopyridine complex. Chem. Commun. 19:2468–2470
- 43.
Cuello AO, McIntosh CM, Rotello VM (2000) Model systems for flavoenzyme activity. The role of N(3)−H hydrogen bonding in flavin redox processes. J. Am. Chem. Soc. 122(14):3517–3521
- 44.
Niemz A, Rotello VM (1996) Model systems for flavoenzyme activity. The effects of specific hydrogen bonds on the 13C and 1H NMR of flavins. J. Mol. Recognit. 9(2):158–162
- 45.
Deans R, Cooke G, Rotello VM (1997) Model systems for flavoenzyme activity. Regulation of flavin recognition via modulation of receptor hydrogen-bond donor− acceptor properties. J Org Chem 62(4):836–839
- 46.
Deans R, Rotello VM (1997) Model systems for flavoenzyme activity. Molecular recognition of flavin at the polymer− liquid interface. J Org Chem 62(13):4528–4529
- 47.
Breinlinger EC, Rotello VM (1997) Model systems for flavoenzyme activity. Modulation of flavin redox potentials through π-stacking interactions. J. Am. Chem. Soc. 119(5):1165–1166
- 48.
Goodman AJ, Breinlinger EC, McIntosh CM, Grimaldi LN, Rotello VM (2001) Model systems for flavoenzyme activity. Control of flavin recognition via specific electrostatic interactions. Org. Lett. 3(10):1531–1534
- 49.
Dutra JK, Cuello AO, Rotello VM (1997) Model systems for flavoenzyme activity. A versatile synthesis of N(3)-alkylated flavins. Tetrahedron Lett. 38(23):4003–4004
- 50.
Deans R, Rotello VM (1996) Model systems for flavoenzyme activity. 2-Aminopyridines as spectroscopic models for flavoenzyme active sites. Tetrahedron Lett. 37(26):4435–4438
- 51.
Greaves MD, Rotello VM (1997) Model systems for flavoenzyme activity. Specific hydrogen bond recognition of flavin in a silicate sol-gel. J. Am. Chem. Soc. 119(44):10569–10572
- 52.
Rodríguez-Otero J, Martínez-Núñez E, Peña-Gallego A, Vázquez SA (2002) The role of aromaticity in the planarity of lumiflavin. J Org Chem. 67(18):6347–6352
- 53.
García JI, Medina M, Sancho J, Alonso PJ, Gomez-Moreno C, Mayoral JA, Martínez JI (2002) Theoretical analysis of the electron spin density distribution of the flavin semiquinone isoalloxazine ring within model protein environments. J. Phys. Chem. A 106(18):4729–4735
- 54.
Lee E, Medvedev ES, Stuchebrukhov AA (2000) Calculation of quantum parameters for nonadiabatic redox reactions. Application to photoreduction of flavin in DNA photolyase. J. Phys. Chem. B 104(29):6894–6902
- 55.
Dmitrenko O, Thorpe C, Bach RD (2003) Effect of a charge-transfer interaction on the catalytic activity of acyl-CoA dehydrogenase: a theoretical study of the role of oxidized flavin. J. Phys. Chem. B 107(47):13229–13236
- 56.
North MA, Bhattacharyya S, Truhlar DG (2010) Improved density functional description of the electrochemistry and structure− property descriptors of substituted flavins. J. Phys. Chem. B 114(46):14907–14915
- 57.
Schultz NE, Zhao Y, Truhlar DG (2005) Databases for transition element bonding: metal−metal bond energies and bond lengths and their use to test hybrid, hybrid meta, and meta density functionals and generalized gradient approximations. J. Phys. Chem. A 109(19):4388–4403
- 58.
Pakiari AH, Pahlavan F (2014) The electronic structures of small Nin (n=2–4) clusters and their interactions with ethylene and triplet oxygen: a theoretical study. ChemPhysChem 15(18):4055–4066
- 59.
Pakiari AH, Shariati S (2016) Geometry and electronic structure of ultrafine/nanoparticle chromium clusters (Crn, n=2–5) and their interaction with oxygen (triplet) and ethylene molecules: a DFT–NBO study. Comput. Theor. Chem. 1084:169–178
- 60.
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.01. Wallingford CT. doi:citeulike-article-id:9096580
- 61.
Stankovich MT (1991) Redox properties of flavins and flavoproteins. Chemistry and biochemistry of flavoenzymes 1:401–425
- 62.
Blaedel W, Jenkins RA (1975) Electrochemical oxidation of reduced nicotinamide adenine dinucleotide. Anal. Chem. 47(8):1337–1343
Author information
Affiliations
Contributions
A.H. Pakiari designed the project. M. Salarhaji, T. Abdollahi, and M. Safapour performed the theoretical calculations and analyzed the data. A.H. Pakiari and M. Salarhaji wrote the paper.
Corresponding author
Ethics declarations
Conflicts of interest
The authors declare that they have no conflict of interest.
Ethics approval
N/A
Consent to participate
N/A
Consent for publication
N/A
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
ESM 1
(DOCX 391 kb)
Rights and permissions
About this article
Cite this article
Pakiari, A.H., Salarhaji, M., Abdollahi, T. et al. The redox potential of flavin derivatives as a mediator in biosensors. J Mol Model 27, 96 (2021). https://doi.org/10.1007/s00894-020-04650-8
Received:
Accepted:
Published:
Keywords
- Flavins
- Reduction potential
- Biosensor
- Mediator
- Density functional theory