Abstract
Structural evolution, magnetic moment, and thermochemical and spectral properties of NdSin0/− (n = 8–20) nanoclusters were studied. Optimized structures for NdSin demonstrated that the configuration with quintet ground state prefers Nd-substituted for a Si of the most stable Sin + 1 (n = 8–11) structure to Nd-linked configuration with Si9 tricapped trigonal prism subcluster (n = 12–19). Finally, the configuration prefers to Nd-encapsulated into Si cage framework (n = 20). For anion, the evolution at the quartet state prefers Nd-linked structure for n = 8–19 (excluded 9), and prefers Nd-encapsulated structure of n = 20. The spectral information including electron affinity, vertical detachment energy, and simulated photoelectron spectroscopy were also observed. The 4f electrons of Nd atom in NdSin with n = 8–10 hardly participate in bonding, but take part in remaining neutral clusters and all anionic NdSin− clusters. The calculations of average bond energy, HOMO-LUMO gap, and chemical bonding analyses reveal that NdSi20− possesses perfect thermodynamic and ideal chemical stability, making it as the most appropriate constitutional units for novel multi-functional semiconductors.
Graphical abstract
Similar content being viewed by others
Data availability
All data generated or analyzed during this study are included in this published article.
References
Ohara M, Miyajima K, Pramann A, Nakajima A, Kaya K (2002). J Phys Chem A 106:3702
Koyasu K, Atobe J, Furuse S, Nakajima A (2008). J Chem Phys 129:214301
Grubisic A, Wang H, Ko YJ, Bowen KH (2008). J Chem Phys 129:54302
Grubisic A, Ko YJ, Wang H, Bowen KH (2009). J Am Chem Soc 131:10783
Hong-Guang X, Miao-Miao W, Zeng-Guang Z, Qiang S, Wei-Jun Z (2011). Chin Phys B 20:43102
Xu H, Zhang Z, Feng Y, Zheng W (2010). Chem Phys Lett 498:22
Liu Y, Yang J, Cheng L (2018). Inorg Chem 57:12934
Jaiswal S, Babar VP, Kumar V (2013). Phys Rev B 88:85412
Peng Q, Shen J (2008). J Chem Phys 128:84711
Hang TD, Hung HM, Nguyen MT (2016). Phys Chem Chem Phys 18:31054
Kenyon AJ (2005). Semicond Sci Technol 20:R65
Kristiantoro T, Idayanti N, Sudrajat N, Septiani A, Others (2016). J Phys Conf Ser 776:12030
Ma J, Gu Y, Shi L, Chen L, Qian Y (2004). Solid State Commun 132:743
Li C, Pan L, Shao P, Ding L, Feng H, Luo D, Liu B (2015). Theor Chem Accounts 134:34
Zhao G, Sun J, Gu Y, Wang Y (2009). J Chem Phys 131:114312
Liu T, Zhao G, Wang Y (2011). Phys Lett A 375:1120
Zhao R, Han J (2014). RSC Adv 4:64410
Zhao R, Chen R, Yuan Y, Gu F, Han J (2016). J Chem Sci 128:365
Zhao R, Han J, Bai J, Liu F, Sheng L (2010). Chem Phys 372:89
Cao T, Zhao L, Feng X, Lei Y, Luo Y (2009). J Mol Struct THEOCHEM 895:148
He S, Yang J (2017). Theor Chem Accounts 136:93
Farooq U, Naz S, Xu H, Yang B, Xu X, Zheng W (2020). Coord Chem Rev 403:213095
Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, Buchert M (2013). J Clean Prod 51:1
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, DanielsAD FÖ, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09 revision C.01. Gaussian Inc, Wallingford
Zhang J, Dolg M (2015). Phys Chem Chem Phys 17:24173
Zhang J, Dolg M (2016). Phys Chem Chem Phys 18:3003
Adamo C, Barone V (1999). J Chem Phys 110:6158
Dolg M, Stoll H, Savin A, Preuss H (1989). Theor Chim Acta 75:173
Dolg M, Stoll H, Preuss H (1993). Theor Chem Accounts 85:441
Bergner A, Dolg M, Chle WKU, Stoll H, Preu SSH (1993). Mol Phys 80:1431
Dolg M, Stoll H, Preuss H (1989). J Chem Phys 90:1730
Cao X, Dolg M (2002). J Mol Struct THEOCHEM 581:139
Schwabe T, Grimme S (2006). Phys Chem Chem Phys 8:4398
Zhang J, Glezakou V-A, Rousseau R, Nguyen M-T (2020). J Chem Theory Comput 16:3947
Vasiliev I, Ögüt S, Chelikowsky JR (1997). Phys Rev Lett 78:4805
Zhu X, Zeng XC (2003). J Chem Phys 118:3558
Zhu XL, Zeng XC, Lei YA, Pan B (2004). J Chem Phys 120:8985
Grossman JC, Mitáš L (1995). Phys Rev Lett 74:1323
Shvartsburg AA, Liu B, Jarrold MF, Ho K (2000). J Chem Phys 112:4517
Lu T, Chen F (2012). J Comput Chem 33:580
Funding
This study was supported by the National Natural Science Foundation of China (Grant No. 21863007) and by the Science and Technology Plan Project in Inner Mongolia Autonomous Region (Gran No. JH20180633).
Author information
Authors and Affiliations
Contributions
Conception and design: X. D, J.Y. Data collection and analysis: X.D., Z.Y., J.Y. Writing—original draft: X.D. Writing—review and editing: X.D., Z.Y., L.C.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethics approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
If accepted, all authors agree to copyright transfer and publication.
Code availability
Not applicable.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
ESM 1
(DOCX 153 kb)
Rights and permissions
About this article
Cite this article
Dong, X., Yang, Z. & Yang, J. Study on the growth behavior and photoelectron spectroscopy of neodymium-doped silicon nanoclusters NdSin0/− (n = 8–20) with a double-hybrid density functional theory. J Mol Model 27, 86 (2021). https://doi.org/10.1007/s00894-020-04637-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00894-020-04637-5