Skip to main content
Log in

Comparative modelling unravels the structural features of eukaryotic TCTP implicated in its multifunctional properties: an in silico approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Comparative modelling helps compare the structure and functions of a given protein, to track the path of its origin and evolution and also guide in structure-based drug discovery. Presently, this has been applied for modelling the tertiary structure of highly conserved eukaryotic TCTP (translationally controlled tumour protein) which is involved in a plethora of functions during growth and development and also acts as a biomarker for many cancers like lung, breast, and prostate cancer. The modelled TCTP structures of different organisms belonging to the eukaryotic group showed similar spatial arrangement of structural units except loops and similar patterns of root mean square deviation (RMSD), root mean square fluctuation, and radius of gyration (Rg) inspected through molecular dynamics simulations. Essential dynamics (ED) analyses revealed different domains that exhibited different motions for the assistance in its multifunctional properties. Construction of a free-energy landscape (FEL) based on Rg versus RMSD was employed to characterize the folding behaviours of structures and observe that all proteins had nearly similar conformation and topologies, indicating common thermodynamic/kinetic pathways. A physico-chemical interaction study demonstrated the helices and sheets were well stabilized with ample amounts of bonding compared to turns or loops and charged residues were more accessible to solvent molecules. Hence, the current study reveals the important structural features of TCTP that aid in diverse functions in a wide range of organisms, thus extending our knowledge of TCTP and also providing a venue for designing the potent inhibitors against it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article/supplementary material.

References

  1. Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci U S A 102:6679–6685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Karplus M, Petsko GA (1990) Molecular dynamics simulations in biology. Nature 347:631

    Article  CAS  PubMed  Google Scholar 

  3. Grime JM, Dama JF, Ganser-Pornillos BK, Woodward CL, Jensen GJ, Yeager M, Voth GA (2016) Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly. Nat Commun 7:11568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schames JR, Henchman RH, Siegel JS, Sotriffer CA, Ni H, McCammon JA (2004) Discovery of a novel binding trench in HIV integrase. J Med Chem 47:1879–1881

    Article  CAS  PubMed  Google Scholar 

  6. Leguebe M, Nguyen C, Capece L, Hoang Z, Giorgetti A, Carloni P (2012) Hybrid molecular mechanics/coarse-grained simulations for structural prediction of G-protein coupled receptor/ligand complexes. PLoS One 7:e47332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Greer J (1981) Model of a specific interaction: salt-bridges form between prothrombin and its activating enzyme blood clotting factor Xa. J Mol Biol 153:1043–1053

    Article  CAS  PubMed  Google Scholar 

  8. Mollison KW, Mandecki W, Zuiderweg ER, Fayer L, Fey A, Krause RA, Conway RG, Miller L, Edalji RP, Shallcross MA (1989) Identification of receptor-binding residues in the inflammatory complement protein C5a by site-directed mutagenesis. Proc Natl Acad Sci U S A 86:292–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. DeMarco ML, Alonso DO, Daggett V (2004) Diffusing and colliding: the atomic level folding/unfolding pathway of a small helical protein. J Mol Biol 341:1109–1124

    Article  CAS  PubMed  Google Scholar 

  10. Cilpa GA, Koivuniemi A, Hyvonen MT, Riekkola ML (2011) Molecular dynamics approach for the association of apolipoprotein B-100 and chondroitin-6-sulphate. J Phys Chem B 115:4818–4825

    Article  CAS  PubMed  Google Scholar 

  11. Chen SH, Wu PS, Chou CH, Yan YT, Liu H, Weng SY, Yang-Yen HF (2007) A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue-or cell type–specific manner. Mol Biol Cell 18:2525–2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gachet Y, Tournier S, Lee M, Lazaris-Karatzas A, Poulton T, Bommer UA (1999) The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J Cell Sci 112:1257–1271

    Article  CAS  PubMed  Google Scholar 

  13. Burgess A, Labbe JC, Vigneron S, Bonneaud N, Strub JM, Van Dorsselaer A, Lorca T, Castro A (2008) Chfr interacts and colocalizes with TCTP to the mitotic spindle. Oncogene 275:554

    Google Scholar 

  14. Cans C, Passer BJ, Shalak V, Nancy-Portebois V, Crible V, Amzallag N, Allanic D, Tufino R, Argentini M, Moras D, Fiucci G (2003) Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. Proc Natl Acad Sci U S A 100:13892–13897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deng SS, Xing TY, Zhou HY, Xiong RH, Lu YG, Wen B, Liu SQ, Yang HJ (2006) Comparative proteome analysis of breast cancer and adjacent normal breast tissues in human. Genomics Proteomics Bioinformatics 4:165–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jung J, Kim HY, Kim M, Sohn K, Lee K (2011) Translationally controlled tumor protein induces human breast epithelial cell transformation through the activation of Src. Oncogene 30:2264

    Article  CAS  PubMed  Google Scholar 

  17. Tuynder M, Susini L, Prieur S, Besse S, Fiucci G, Amson R, Telerman A (2002) Biological models and genes of tumor reversion: cellular reprogramming through tpt1/TCTP and SIAH-1. Proc Natl Acad Sci U S A 99:14976–14981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baylot V, Katsogiannou M, Andrieu C, Taieb D, Acunzo J, Giusiano S, Fazli L, Gleave M, Garrido C, Rocchi P (2012) Targeting TCTP as a new therapeutic strategy in castration-resistant prostate cancer. Mol Ther 20:2244–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim JE, Koo KH, Kim YH, Sohn J, Park YG (2008) Identification of potential lung cancer biomarkers using an in vitro carcinogenesis model. Exp Mol Med 40:709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chung S, Kim M, Choi WJ, Chung JK, Lee K (2000) Expression of translationally controlled tumor protein mRNA in human colon cancer. Cancer Lett 156:185–190

    Article  CAS  PubMed  Google Scholar 

  21. Zhu WL, Cheng HX, Han NA, Liu DL, Zhu WX, Fan BL, Duan FL (2008) Messenger RNA expression of translationally controlled tumor protein (TCTP) in liver regeneration and cancer. Anticancer Res 28:1575–1580

    CAS  PubMed  Google Scholar 

  22. Ma Q, Geng Y, Xu W, Wu Y, He F, Shu W, Huang M, Du H, Li M (2009) The role of translationally controlled tumor protein in tumor growth and metastasis of colon adenocarcinoma cells. J Proteome Res 9:40–49

    Article  Google Scholar 

  23. Eichhorn T, Winter D, Buchele B, Dirdjaja N, Frank M, Lehmann WD, Mertens R, Krauth-Siegel RL, Simmet T, Granzin J, Efferth T (2013) Molecular interaction of artemisinin with translationally controlled tumor protein (TCTP) of Plasmodium falciparum. Biochem Pharmacol 85:38–45

    Article  CAS  PubMed  Google Scholar 

  24. Kumar R, Maurya R, Saran S (2017) Identification of novel inhibitors of the translationally controlled tumor protein (TCTP): insights from molecular dynamics. Mol BioSyst 13:510–524

    Article  CAS  PubMed  Google Scholar 

  25. Berkowitz O, Jost R, Pollmann S, Masle J (2008) Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. Plant Cell 20:3430–3447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hsu YC, Chern JJ, Cai Y, Liu M, Choi KW (2007) Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445:785

    Article  CAS  PubMed  Google Scholar 

  27. Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of comparative protein modeling by MODELLER. Proteins 23:318–326

    Article  CAS  PubMed  Google Scholar 

  28. Fiser A, Do RKG (2000) Modeling of loops in protein structures. Protein Sci 9:1753–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, Prlic A, Quesada M, Quinn GB, Westbrook JD, Young J (2010) The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res 39:D392–D401

    Article  PubMed  PubMed Central  Google Scholar 

  30. Feng Y, Liu D, Yao H, Wang J (2007) Solution structure and mapping of a very weak calcium-binding site of human translationally controlled tumor protein by NMR. Arch Biochem Biophys 467:48–57

    Article  CAS  PubMed  Google Scholar 

  31. Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  32. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  CAS  PubMed  Google Scholar 

  33. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  34. Ichiye T, Karplus M (1991) Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins 11:205–217

    Article  CAS  PubMed  Google Scholar 

  35. Hess B (2000) Similarities between principal components of protein dynamics and random diffusion. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 62:8438

    CAS  PubMed  Google Scholar 

  36. Kumar R, Saran S (2018) Structure, molecular dynamics simulation, and docking studies of Dictyostelium discoideum and human STRAPs. J Cell Biochem 119:7177–7191

    Article  CAS  PubMed  Google Scholar 

  37. Piovesan D, Minervini G, Tosatto SC (2016) The RING 2.0 web server for high quality residue interaction networks. Nucleic Acids Res 44:367–W374

    Article  Google Scholar 

  38. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Eisenhaber F, Lijnzaad P, Argos P, Sander C, Scharf M (1995) The double cubic lattice method: efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. J Comput Chem 16:273–284

    Article  CAS  Google Scholar 

  40. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hayward S, De Groot BL (2008) Normal modes and essential dynamics. Methods Mol Biol 443:89–106

    Article  CAS  PubMed  Google Scholar 

  42. Yarm FR (2002) Plk phosphorylation regulates the microtubule-stabilizing protein TCTP. Mol Cell Biol 22:6209–6221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tiwari SP, Fuglebakk E, Hollup SM, Skjærven L, Cragnolini T, Grindhaug SH, Tekle KM, Reuter N (2014) WEBnm@ v2. 0: web server and services for comparing protein flexibility. BMC Bioinform 15:427

    Article  Google Scholar 

  44. Duan Y, Kollman PA (1998) Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282:740–744

    Article  CAS  PubMed  Google Scholar 

  45. Nick Pace C, Scholtz JM, Grimsley GR (2014) Forces stabilizing proteins. FEBS Lett 588:177–2184

    Article  Google Scholar 

  46. Baldauf SL, Doolittle WF (1997) Origin and evolution of the slime molds (Mycetozoa). Proc Natl Acad Sci U S A 94:12007–12012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang Y, Yang F, Xiong Z, Yan Y, Wang X, Nishino M, Mirkovic D, Nguyen J, Wang H, Yang XF (2005) An N-terminal region of translationally controlled tumor protein is required for its antiapoptotic activity. Oncogene 24:4778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Partial funding from DST-PURSE, DST-FIST, UGC Networking, and UPE II to S.S. is acknowledged. R.K. thanks the Indian Council of Medical Research for the research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

R.K. conceptualized, designed, and performed the experiments. R.K. and S.S. analyzed the data and wrote the manuscript. Both the authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Shweta Saran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not required.

Consent to participate

All authors agreed to participate.

Consent for publication

All authors give their consent for publication.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 1400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Saran, S. Comparative modelling unravels the structural features of eukaryotic TCTP implicated in its multifunctional properties: an in silico approach. J Mol Model 27, 20 (2021). https://doi.org/10.1007/s00894-020-04630-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04630-y

Keywords

Navigation