Skip to main content
Log in

Implementation of biomolecular logic gate using DNA and electrically doped GaAs nano-pore: a first principle paradigm

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

One of the emerging areas of today’s research arena is molecular modeling and molecular computing. The molecular logic gate can be theoretically implemented from single-strand DNA which consists of four basic nucleobases. In this study, the electronic transmission characteristics of DNA chain are investigated to form the logic gate. This biomolecular single-strand DNA chain is passed through an electrically doped gallium-arsenide nano-pore to achieve reasonably improved transmission along <1 1 1> direction. Current-voltage characteristic and device density of states with HOMO-LUMO plot of the device are explained along with the conductivity of the device to confirm the characteristics of some important logic gates like a universal gate. Ultimately the property of resistivity proves the law of Boolean logic of AND gate and universal logic gate, viz., NAND and NOR gate. All the electronic properties of the Boolean logic gate are explored based on the first principle approach by non-equilibrium Green’s function coupled with density functional theory in room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All the data and material are available in the manuscript.

References

  1. Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266(5187):1021–1024

    Article  CAS  Google Scholar 

  2. Xu Y, Fang C, Cui B, Ji G, Zhai Y, Liu D (2011) Gated electronic currents modulation and designs of logic gates with single molecular field effect transistors. Appl Phys Lett 99(4):043304

    Article  Google Scholar 

  3. Reed MA, Tour JM (2000) Computing with molecules. Sci Am 282(6):86–93

    Article  CAS  Google Scholar 

  4. Chen Y, Jung GY, Ohlberg DA, Li X, Stewart DR, Jeppesen JO, Nielsen KA, Stoddart JF, Williams RS (2003) Nanoscale molecular-switch crossbar circuits. Nanotechnology 14(4):462–468

    Article  CAS  Google Scholar 

  5. Zhang C, Du MH, Cheng HP, Zhang XG, Roitberg AE, Krause JL (2004) Coherent electron transport through an azobenzene molecule: a light-driven molecular switch. Phys Rev Lett 92(15):158301

    Article  CAS  Google Scholar 

  6. Roy P, Dey D, De D First principle approach towards logic design using hydrogen doped single strand DNA. IET Nanobiotechnol, to be published. https://doi.org/10.1049/iet-nbt.2018.5027

  7. Okamoto A, Tanaka K, Saito I (2004) DNA logic gates. J Am Chem Soc 126(30):9458–9463

    Article  CAS  Google Scholar 

  8. Sakamoto K, Gouzu H, Komiya K, Kiga D, Yokoyama S, Yokomori T, Hagiya M (2000) Molecular computation by DNA hairpin formation. Science 288(5469):1223–1226

    Article  CAS  Google Scholar 

  9. Lewis FD, Liu X (1999) Phototriggered DNA hairpin formation in a stilbenediether-linked bis (oligonucleotide) conjugate. J Am Chem Soc 121(50):11928–11929

    Article  CAS  Google Scholar 

  10. Vercoutere W, Winters-Hilt S, Olsen H, Deamer D, Haussler D, Akeson M (2001) Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nat Biotechnol 19(3):248

    Article  CAS  Google Scholar 

  11. Hilbers CW, Haasnoot CAG, De Bruin SH, Joordens JJM, Van Der Marel GA, Van Boom JH (1985) Hairpin formation in synthetic oligonucleotides. Biochimie 67(7–8):685–695

    Article  CAS  Google Scholar 

  12. Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E (2001) Programmable and autonomous computing machine made of biomolecules. Nature 414(6862):430–434

    Article  CAS  Google Scholar 

  13. Benenson Y, Adar R, Paz-Elizur T, Livneh Z, Shapiro E (2003) DNA molecule provides a computing machine with both data and fuel. Proc Natl Acad Sci U S A 100(5):2191–2196

    Article  CAS  Google Scholar 

  14. Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) An autonomous molecular computer for logical control of gene expression. Nature 429(6990):423–429

    Article  CAS  Google Scholar 

  15. Stojanovic MN, Mitchell TE, Stefanovic D (2002) Deoxyribozyme-based logic gates. J Am Chem Soc 124(14):3555–3561

    Article  CAS  Google Scholar 

  16. Roy P, Dey D, Sinha S, De D (2013) Reversible OR logic gate design using DNA. Proc. of 7th Int. Conf. on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), Gwalior, India. Springer, India, pp 355–366

    Google Scholar 

  17. Orbach R, Remacle F, Levine RD, Willner I (2014) DNAzyme-based 2: 1 and 4: 1 multiplexers and 1: 2 demultiplexer. Chem Sci 5(3):1074–1081

    Article  CAS  Google Scholar 

  18. Roy P, Sinha S, De D (2014) Algorithmic approach for DNA based multiplexer design. J Bioinform Intell Control 3(3):179–185

    Article  Google Scholar 

  19. Wu R, Li Y, Yang J (2017) DNA molecular logic gates based on DNAzyme regulation. Proc. of 4th International Conference on Information Science and Control Engineering (ICISCE), Changsha, China, pp 975–978

  20. Yang J, Jiang S, Liu X, Pan L, Zhang C (2016) Aptamer-binding directed DNA origami pattern for logic gates. ACS Appl Mater Interfaces 8(49):34054–34060

    Article  CAS  Google Scholar 

  21. Zhang C, Yang J, Jiang S, Liu Y, Yan H (2015) DNAzyme-based logic gate-mediated DNA self-assembly. Nano Lett 16(1):736–741

    Article  Google Scholar 

  22. Yang J, Song Z, Liu S, Zhang Q, Zhang C (2016) Dynamically arranging gold nanoparticles on DNA origami for molecular logic gates. ACS Appl Mater Interfaces 8(34):22451–22456

    Article  CAS  Google Scholar 

  23. Zoraida BSE, Arock M, Ronald BSM, Ponalagusamy R (2008) A novel generalized model for constructing reusable and reliable logic gates using DNA. Proc. of 4th International Conference on Natural Computation (ICNC'08), Jinan, China, pp 533–537

  24. Chen TH, Hayes JP (2019) Equivalence among stochastic logic circuits and its application to synthesis. IEEE Trans Emerg Top Comput 7(1):67–79

    Article  Google Scholar 

  25. Poirier C, Gosselin B, Fortier P (2018) DNA assembly with De Bruijn graphs using an FPGA platform. IEEE/ACM Trans Comput Biol Bioinformatics 15(3):1003–1009

    Article  Google Scholar 

  26. Dey D, Roy P, De D (2016) Electronic characterisation of atomistic modelling based electrically doped nano bio pin FET. IET Comput Digit Tech 10(5):273–285

    Article  Google Scholar 

  27. Zhu J, Huang J, Zhang P, Li Q, Kohli M, Huang CC, Wang L (2020) Advantages of single-stranded DNA over double-stranded DNA library preparation for capturing cell-free tumor DNA in plasma. Mol Diagn Ther 24(1):95–101

    Article  CAS  Google Scholar 

  28. Dong J, Wang M, Zhou Y, Zhou C, Wang Q (2020) DNA‐Based Adaptive Plasmonic Logic Gates. Angewandte Chemie 132(35):15148–15152

  29. Chen T, Fu X, Zhang Q, Mao D, Song Y, Feng C, Zhu X (2020) A DNA logic gate with dual-anchored proximity aptamers for the accurate identification of circulating tumor cells. Chemical Communications 56(51):6961–6964

  30. Zhang XY, Zhao P (2020) Molecular logic gates based on spin caloritronic transport properties of Mn phthalocyanine nanoribbon. Physics Letter A 384(13):126256

  31. Manna AK, Sahu M, Rout K, Das UK, Patra GK (2020) A highly selective novel multiple amide based Schiff base optical chemosensor for rapid detection of Cu2+ and its applications in real sample analysis, molecular logic gate and smart phone. Microchemical Journal 157:104860

  32. Roy P, Dey D, De D (2015) Atomistic scale modeling of single strand DNA logic gate. Proc. of Int. Conf. on Nanomaterials and Nanotechnology (NANO-15), Tamilnadu, India, pp 225–228

  33. QuantumWise A/S: Version 12.8.0. Atomistix ToolKit (ATK), QuantumWise simulator. Available at: http://www.quantumwise.com

  34. Landauer R (1970) Electrical resistance of disordered one-dimensional lattices. Philos Mag 21(172):863–867

    Article  CAS  Google Scholar 

  35. Büttiker M (1986) Role of quantum coherence in series resistors. Phys Rev B 33(5):3020–3026

    Article  Google Scholar 

  36. Büttiker M (1986) Four-terminal phase-coherent conductance. Phys Rev Lett 57(14):1761–1764

    Article  Google Scholar 

  37. Dey D, Roy P, De D Electronic enhancement effect of doped ferromagnetic material in biomolecular heterojunction switch. IET Circuits, Devices & Systems, to be published. https://doi.org/10.1049/iet-cds.2018.5244

Download references

Funding

The authors are grateful to the University Grants Commission, India, for the project under UGC Major Project File No.: 41–631/2012 (SR).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equally contributed to prepare the manuscript.

Corresponding author

Correspondence to Debarati Dey.

Ethics declarations

Conflict of interests

The author declare that there is no conflict of interest.

Ethics approval

On behalf of all authors, the corresponding author gives approval for ethical issues.

Consent to participate

All the authors have equally participated to prepare the manuscript.

Consent for publication

On behalf of all authors, the corresponding author gives consent for publication.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, D., Roy, P. & De, D. Implementation of biomolecular logic gate using DNA and electrically doped GaAs nano-pore: a first principle paradigm. J Mol Model 27, 23 (2021). https://doi.org/10.1007/s00894-020-04623-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04623-x

Keywords

Navigation