Skip to main content
Log in

Polynitro-acetone, dimethyl ether, and dimethylamine: a series of potential green and powerful oxidants for propellants

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

With the purpose of searching novel, green and energetic oxidants, polynitro-acetone, polynitro-dimethyl ether, and polynitro-dimethylamine are designed as potential powerful oxidants and energetic materials in this work. Their optimized molecular geometries and electronic structures are calculated using density functional theory at m062x/6-311G++(d,p) level. Based on these results, heat of formation (HOF), detonation energy (Q), detonation velocity (D), and detonation pressure (P) are further evaluated. It is found that the oxygen-rich and chlorine-free compounds with 5 to 6 NO2 groups in molecule can be used as the potential energetic oxidants with high oxygen balance, while those with 3 to 4 NO2 groups are suitable for high-density energetic materials. Furthermore, stability correlations of all the compounds are established according to calculated bond order, natural bond orbital (NBO), bond dissociation enthalpies (BDE), and energy gaps (ΔELUMO–HOMO). Finally, burning rate is also calculated to show their potential application as oxidants in propellants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Zhao G, Yin P, Kumar D, Imler GH, Parrish DA, Shreeve JM (2019) Bis(3-nitro-1-(trinitromethyl) -1H-1,2,4-triazol-5-yl)methanone: an applicable and very dense green oxidizer. J. Am. Chem. Soc. 141:19581–19584

    CAS  PubMed  Google Scholar 

  2. Chan ML, Russ RJ, Ciaramitaro DA (2000) Advances in solid propellant formulations. In Solid propellant chemistry, combustion, and motor interior ballistics. AIAA

  3. Gao H, Shreeve JNM (2011) Azole-based energetic salts. Chem. Rev. 111:7377–7436

    CAS  PubMed  Google Scholar 

  4. Hu L, Yin P, Zhao G, He C, Imler GH, Parrish DA, Gao H, Shreeve JM (2018) Conjugated energetic salts based on fused rings: insensitive and highly dense materials. J. Am. Chem. Soc. 140:15001–15007

    CAS  PubMed  Google Scholar 

  5. Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP (2008) Advances in science and technology of modern energetic materials: an overview. J. Hazard. Mater. 151:289–305

    CAS  PubMed  Google Scholar 

  6. Brinck T (2014) Green energetic materials. Wiley

  7. Levy JB, Elbe GV, Friedman R, Wallin T, Adams SJ (1966) The deflagration of hydrazine perchlorate - advanced propellant chemistry. American Chemical Society, Washington D.C

    Google Scholar 

  8. Wagaman KL (1990) Synthesis of hydroxylamine salts. U.S. Patent 4956168

  9. Wang PC, Zhu ZS, Xu J, Zhao XJ, Lu M (2013) Theoretical study of the thermodynamic and burning properties of oxygen-rich hydrazine derivatives—green and powerful oxidants for energetic materials. J. Mol. Model. 19:2583–2591

    CAS  PubMed  Google Scholar 

  10. Wang K, Xue B, Chen JG, He ZH, Ji YP, Wang BZ, Lu J, Liu ZW, Liu ZT (2020) A combined experimental and theoretical study of the thermal decomposition mechanism and kinetics of ammonium dinitramide (ADN). New J. Chem. 44:6833–6844

    CAS  Google Scholar 

  11. Mathias P, Kjell A, Pete F (2019) Flight heritage of ammonium Dinitramide (ADN) based high performance green propulsion (HPGP) systems. Propell Explos Pyrot 44:1073–1079

    Google Scholar 

  12. Venkatachalam S, Santhosh G, Ninan Ninan K (2004) An overview on the synthetic routes and properties of ammonium dinitramide (ADN) and other dinitramide salts. Propell Explos Pyrot 29:178–187

    CAS  Google Scholar 

  13. Sokolovsky M, Riordan JF, Vallee BL (1966) Tetranitromethane. A Reagent for the Nitration of Tyrosyl Residues in Proteins. Biochemistry 5:3582–3589

    CAS  PubMed  Google Scholar 

  14. Gutierrez M, Henglein A (1988) Sonolytic decomposition of poly(vinylpyrrolidone), ethanol and tetranitromethane in aqueous solution. J. Phys. Chem. 92:2978–2981

    CAS  Google Scholar 

  15. He Y, Zhang H, Lv M (2020) The strategy for improving the stability of nitroform derivatives—high-energetic oxidant based on hexanitroethane. J. Mol. Model. 26:181–188

    CAS  PubMed  Google Scholar 

  16. Gallaghan AJ (1963) Synthesis of hexanitroethane. U.S. Patent 3101379

  17. Türker L, Gümüş S, Atalar T (2010) A DFT study on nitro derivatives of pyridine. J Energ Mater 28:139–171

    Google Scholar 

  18. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  19. Becke AD (1992) Density functional thermochemistry. II. The effect of the Perdew-Wang generalized gradient correlation correction. J Chem Phys 97:9173–9177

    CAS  Google Scholar 

  20. Perdew JP (1991) In Electronic structure of solids ‘91. Akademie, Berlin

    Google Scholar 

  21. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46:6671–6687

    CAS  Google Scholar 

  22. Wong MW, Wiberg KB, Frisch M (1991) Hartree--Fock second derivatives and electric field properties in a solvent reaction field: theory and application. J. Chem. Phys. 95:8991–8998

    CAS  Google Scholar 

  23. Wong MW, Frisch MJ, Wiberg KB (1991) Solvent effects. 1. The mediation of electrostatic effects by solvents. J. Am. Chem. Soc. 113:4776–4782

    CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Lyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Camml R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, PMW G, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Pittsburgh, PA, Gaussian, Inc

    Google Scholar 

  25. Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc. Chem. Res. 36:255–263

    CAS  PubMed  Google Scholar 

  26. Yao XQ, Hou XJ, Jiao H, Xiang HW, Li YW (2003) Accurate calculations of bond dissociation enthalpies with density functional methods. J. Phys. Chem. A 107:9991–9996

    CAS  Google Scholar 

  27. Stewart JJP (1989) Optimization of parameters for semiempirical methods I. Method. J Comput Chem 10:209–220

    CAS  Google Scholar 

  28. Zhang X, Zhu W, Xiao H (2010) Comparative theoretical studies of energetic substituted carbon- and nitrogen- bridged difurazans. J. Phys. Chem. A 114:603–612

    CAS  PubMed  Google Scholar 

  29. Zhang X, Zhu W, Wei T, Zhang C, Xiao H (2010) Densities, heats of formation, energetic properties, and thermodynamics of formation of energetic nitrogen-rich salts containing substituted protonated and methylated tetrazole cations: a computational study. J. Phys. Chem. C 114:13142–13152

    CAS  Google Scholar 

  30. Kamlet MJ, Jacobs ST (1968) Chemistry of detonations. I. A simple method for calculating detonation properties of CHNO explosives. J Chem Phys 48:23–35

    CAS  Google Scholar 

  31. Yang J, Wang G, Gong X, Zhang J, Wang YA (2018) High-energy nitramine explosives: a design strategy from linear to cyclic to caged molecules. ACS omega 3:9739–9745

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Li BT, Li LL, Ye MY (2020) Thermal stability and detonation character of nitro-substituted derivatives of cytosine. Chem. Phys. 536:110846

    CAS  Google Scholar 

  33. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbe A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol. Phys. 107:2095–2101

    CAS  Google Scholar 

  34. Pospíšil M, Vávra P, Concha M, Murray J, Politzer P (2010) A possible crystal volume factor in the impact sensitivities of some energetic compounds. J. Mol. Model. 16:895–901

    PubMed  Google Scholar 

  35. Rice BM, Hare JJ, Byrd EFC (2007) Accurate predictions of crystal densities using quantum mechanical molecular volumes. J. Phys. Chem. A 111:10874–10879

    CAS  PubMed  Google Scholar 

  36. Qiu L, Xiao HM, Gong XD, Ju XH, Zhu WH (2006) Theoretical studies on the structures, thermodynamic properties, detonation properties, and pyrolysis mechanisms of spiro nitramines. J. Phys. Chem. A 110:3797–3807

    CAS  PubMed  Google Scholar 

  37. Xu XJ, Xiao HM, Gong XD, Ju XH, Chen ZX (2005) Theoretical studies on the vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanisms for polynitroadamantanes. J. Phys. Chem. A 109:11268–11274

    CAS  PubMed  Google Scholar 

  38. Svatopluk Z, Marcela J (2016) Sensitivity and performance of energetic materials. Propell Explos Pyrot 41:426–451

    Google Scholar 

  39. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33:580–592

    PubMed  Google Scholar 

  40. Wang G, Gong XD, Liu Y, Du H, Xu XJ, Xiao HM (2010) A theoretical investigation on the structures, densities, detonation properties and pyrolysis mechanism of the nitro derivatives of toluenes. J. Hazard. Mater. 177:703–710

    CAS  PubMed  Google Scholar 

  41. Wiberg KB, Ochterski JW (1997) Comparison of different ab initio theoretical models for calculating isodesmic reaction energies for small ring and related compounds. J. Comput. Chem. 18:108–114

    CAS  Google Scholar 

  42. Ventura ON, Cachau RE, Kieninger M (1999) Density functional and coupled-cluster calculations of isodesmic reactions involving fluorine oxides. Chem. Phys. Lett. 301:331–335

    CAS  Google Scholar 

  43. Song HC, Yang D (1997) Model for predicting the burning rate of double base propellants from ingredients. 28th International Annual Conference of ICT, Karlsruhe

  44. Yang D, Song HC, Zhao FQ, Li SW (2000) Burning-rate prediction of double-base plateau propellants progress. Prog. Astronaut. Aeronaut. 185:535–548

    Google Scholar 

  45. Son SF, Brewster MQ (1993) Unsteady combustion of solid propellants subject to dynamic external radiant heating. Combust Explos Shock Waves 29:281–285

    Google Scholar 

  46. Najm HN, Paul PH, Mueller CJ, Wyckoff PS (1998) On the adequacy of certain experimental observables as measurements of flame burning rate. Combust Flame 113:312–332

    CAS  Google Scholar 

  47. Zhang JH, Zhang QH, Thao TV, Parrish DA, Shreeve JM (2015). J. Am. Chem. Soc. 137:1697–1704

    CAS  PubMed  Google Scholar 

  48. Gabor NS, Gyorgy GF (1995) Molecular electrostatics. Chem. Rev. 95:829–847

    Google Scholar 

  49. Liu H, Wang F, Wang GX, Gong XD (2012) Theoretical investigations on structure, density, detonation properties, and sensitivity of the derivatives of PYX. J. Comput. Chem. 33:1790–1796

    CAS  PubMed  Google Scholar 

  50. Wang F, Du H, Zhang J, Gong XD (2011) Computational studies on the crystal structure, thermodynamic properties, detonation performance, and pyrolysis mechanism of 2,4,6,8-tetranitro-1,3,5,7-tetraazacubane as a novel high energy density material. J. Phys. Chem. A 115:11788–11795

    CAS  PubMed  Google Scholar 

  51. Bu RP, Xiong Y, Wei XF, Li HZ, Zhang CY (2019) Hydrogen bonding in CHON-containing energetic crystals: a review. Cryst. Growth Des. 19:5981–5997

    CAS  Google Scholar 

  52. Dany F (2017) Predicting the plate dent test output in order to assess the performance of condensed high explosives. J Energetic Mater 35:20–28

    Google Scholar 

Download references

Funding

The research was supported by National Natural Science Foundation of China (No: 11972195) for Peng-cheng Wang.

Author information

Authors and Affiliations

Authors

Contributions

J. Zhu and P-C. Wang designed the compounds in this work. J. Zhu and Q.-X. Du did the calculation and analysis in the original manuscript. J. Zhu and P.-W. Zhu did the calculation and analysis in the revised manuscript. J. Zhu and P.-C. Wang wrote the manuscript with the inputs from everyone. P.-C. Wang supervised the project.

Corresponding authors

Correspondence to Jie Zhu or Peng-cheng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

N/A

Consent to participate

N/A

Consent for publication

N/A

Code availability

N/A

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 87 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Zhu, Pw., Du, Qx. et al. Polynitro-acetone, dimethyl ether, and dimethylamine: a series of potential green and powerful oxidants for propellants. J Mol Model 26, 347 (2020). https://doi.org/10.1007/s00894-020-04613-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04613-z

Keywords

Navigation