Skip to main content

Advertisement

Log in

Gaseous complex hydrides NaMH4 and Na2MH5 (M = B, Al) as hydrogen storage materials: a quantum chemical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Metal hydrides are feasible for energy storage applications as they are able to decompose with hydrogen gas release. In this work, gaseous complex sodium hydrides, NaMH4 and Na2MH5 (M = B or Al), have been investigated using DFT/B3P86 and MP2 methods with 6-311++G(d,p) basis set; the optimized geometry, vibrational spectra and thermodynamic (TD) properties have been determined. Based on TD approach, a stability of the hydrides to different dissociation channels is analysed; the enthalpies of formation ∆fH°(0) of gaseous species have been obtained: − 1 ± 17 kJ mol−1 (NaBH4), 91 ± 14 kJ mol−1 (NaAlH4), − 13 ± 16 kJ mol−1 (Na2BH5), and 71 ± 16 kJ mol−1 (Na2AlH5). The complex hydrides are confirmed to produce gaseous products with hydrogen gas release at elevated temperature, whereas heterophase reactions, with NaH and B/Al products in condensed state, are predicted to occur spontaneously at lower temperature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mustafa NS, Yahya MS, Sazelee N, Ali NA, Ismail M (2018) Dehydrogenation properties and catalytic mechanism of the K2NiF6-doped NaAlH4 system. ACS omega 3:17100–17107. https://doi.org/10.1021/acsomega.8b02281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rusman N, Dahari M (2016) A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int J Hydrog Energy 41:12108–12126. https://doi.org/10.1016/j.ijhydene.2016.05.244

    Article  CAS  Google Scholar 

  3. Pottmaier D, Baricco M (2015) Materials for hydrogen storage and the Na-Mg-BH system. AIMS Energy 3:75–100. https://doi.org/10.3934/energy.2015.1.75

    Article  CAS  Google Scholar 

  4. Zhang L, Yan N, Yao Z, Sun Z, Lu X, Nyahuma FM, Zhu R, Tu G, Chen L (2020) Remarkably improved hydrogen storage properties of carbon layers covered nanocrystalline Mg with certain air stability. Int J Hydrog 45:28134–28143. https://doi.org/10.1016/j.ijhydene.2020.03.170

  5. Ouyang L, Liu F, Wang H, Liu J, Yang X-S, Sun L, Zhu M, Compounds (2020) Magnesium-based hydrogen storage compounds: A review. J Alloys 832:154865. https://doi.org/10.1016/j.jallcom.2020.154865 

  6. Züttel A, Rentsch S, Fischer P, Wenger P, Sudan P, Mauron P, Emmenegger C (2003) Hydrogen storage properties of LiBH4. J Alloys Compd 356:515–520. https://doi.org/10.1016/S0925-8388(02)01253-7

    Article  CAS  Google Scholar 

  7. Ley MB, Jepsen LH, Lee Y-S, Cho YW, Von Colbe JMB, Dornheim M, Rokni M, Jensen JO, Sloth M, Filinchuk YJMT (2014) Complex hydrides for hydrogen storage–new perspectives. Mater Today 17:122–128. https://doi.org/10.1016/j.mattod.2014.02.013

    Article  CAS  Google Scholar 

  8. Saitoh H, Takagi S, Matsuo M, Iijima Y, Endo N, Aoki K, Orimo S-i (2014) Li4FeH6: iron-containing complex hydride with high gravimetric hydrogen density. APL Materials 2:076103. https://doi.org/10.1063/1.4886219

    Article  CAS  Google Scholar 

  9. Gasnier A, Amica G, Juan J, Troiani H, Gennari FC (2019) N-doped graphene-rich aerogels decorated with nickel and cobalt nanoparticles: effect on hydrogen storage properties of nanoconfined LiBH4. J Phys Chem 124:115–125. https://doi.org/10.1021/acs.jpcc.9b09510

    Article  CAS  Google Scholar 

  10. Kumar D, Krishnamurty S, Pal SJTJPCC (2017) Dissociative adsorption of molecular hydrogen on BN-doped graphene-supported aluminum clusters. J Phys Chem C 121:26493–26498. https://doi.org/10.1021/acs.jpcc.7b07789

    Article  CAS  Google Scholar 

  11. Li J, Li B, Shao H, Li W, Lin H (2018) Catalysis and downsizing in Mg-based hydrogen storage materials. Catalysts 8:89. https://doi.org/10.3390/catal802008

    Article  Google Scholar 

  12. Zhang F, Wang Y, Chou M (2011) Theoretical study of the vibrational properties of NaAlH4 with AlH3 vacancies. Faraday Discuss 151:243–251. https://doi.org/10.1039/C0FD00012D

    Article  CAS  PubMed  Google Scholar 

  13. Li B, Li J, Zhao H, Yu X, Shao H (2019) Mg-based metastable nano alloys for hydrogen storage. Int J Hydrog Energy 44:6007–6018. https://doi.org/10.1016/j.ijhydene.2019.01.127

    Article  CAS  Google Scholar 

  14. El Khatabi M, Bhihi M, Naji S, Labrim H, Benyoussef A, El Kenz A, Loulidi M (2016) Study of doping effects with 3d and 4d-transition metals on the hydrogen storage properties of MgH2. Int J Hydrog Energy 41:4712–4718. https://doi.org/10.1016/j.ijhydene.2016.01.001

    Article  CAS  Google Scholar 

  15. Dovgaliuk I, Le Duff CS, Robeyns K, Devillers M, Filinchuk Y (2015) Mild dehydrogenation of ammonia borane complexed with aluminum borohydride. Chem Mater 27:768–777. https://doi.org/10.1021/cm503601h

    Article  CAS  Google Scholar 

  16. Bogdanović B, Brand RA, Marjanović A, Schwickardi M, Tölle J (2000) Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. J Alloys Compd 302:36–58. https://doi.org/10.1016/S0925-8388(99)00663-5

    Article  Google Scholar 

  17. Orimo S-i, Nakamori Y, Eliseo JR, Züttel A, Jensen CM (2007) Complex hydrides for hydrogen storage. Chem Rev 107:4111–4132. https://doi.org/10.1021/cr0501846

    Article  CAS  PubMed  Google Scholar 

  18. Oliveira AC, Pavão A (2018) Theoretical study of hydrogen storage in metal hydrides. J Mol Model 24:127. https://doi.org/10.1007/s00894-018-3661-4

    Article  CAS  PubMed  Google Scholar 

  19. Graetz J (2012) Metastable metal hydrides for hydrogen storage. International Scholarly Research Notices 2012. 10.5402/2012/863025

  20. Maatallah M, Cherqaoui D, Jarid A, Liebman JF (2012) Large gallanes and the PSEPT theory: a theoretical study of GanHn+2 clusters (n= 7–9). J Mol Model 18:3321–3328. https://doi.org/10.1007/s00894-011-1335-6

    Article  CAS  PubMed  Google Scholar 

  21. Yang J, Sudik A, Wolverton C, Siegel DJ (2010) High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem Soc Rev 39:656–675. https://doi.org/10.1039/B802882F

    Article  CAS  PubMed  Google Scholar 

  22. Lototskyy M, Yartys V, Pollet B, Bowman Jr R (2014) Metal hydride hydrogen compressors: a review. Int J Hydrog Energy 39:5818–5851. https://doi.org/10.1016/j.ijhydene.2014.01.158

    Article  CAS  Google Scholar 

  23. Chen P, Zhu M (2008) Recent progress in hydrogen storage. Mater Today 11:36–43. https://doi.org/10.1016/S1369-7021(08)70251-7

    Article  Google Scholar 

  24. Jena P (2011) Materials for hydrogen storage: past, present, and future. The Journal of Physical Chemistry Letters 2:206–211. https://doi.org/10.1021/jz1015372

    Article  CAS  Google Scholar 

  25. Bhuiya MMH, Lee CY, Hwang T, Munira S, Hopkins R, Yoon H, Park SH, Kim KJ (2014) Experimentally tuned dual stage hydrogen compressor for improved compression ratio. Int J Hydrog Energy 39:12924–12933. https://doi.org/10.1016/j.ijhydene.2014.05.186

    Article  CAS  Google Scholar 

  26. Sundqvist B. (2009). Pressure-temperature phase relations in complex hydrides. Paper presented at the Solid State Phenomena

  27. Wang G (2016) DFT investigations of hydrogen storage materials. Thesis

  28. Baricco M, Palumbo M, Pinatel E, Corno M, Ugliengo P. (2010). Thermodynamic database for hydrogen storage materials. Paper presented at the Advances in Science and Technology

  29. y De Dompablo MA, Ceder G (2004) First principles investigations of complex hydrides AMH4 and A3MH6 (A= Li, Na, K, M= B, Al, Ga) as hydrogen storage systems. J Alloys Compd 364:6–12. https://doi.org/10.1016/S0925-8388(03)00522-X

    Article  CAS  Google Scholar 

  30. Chakrabarti S, Biswas K (2017) Effect on specific capacity and de-hydrogenation efficiency in doped-MgH2. Int J Hydrog Energy 42:327–339. https://doi.org/10.1016/j.ijhydene.2016.12.118

    Article  CAS  Google Scholar 

  31. Pasini JM, Corgnale C, van Hassel BA, Motyka T, Kumar S, Simmons KL (2013) Metal hydride material requirements for automotive hydrogen storage systems. Int J Hydrog Energy 38:9755–9765. https://doi.org/10.1016/j.ijhydene.2012.08.112

    Article  CAS  Google Scholar 

  32. Delmelle R, Gehrig JC, Borgschulte A, Züttel A (2014) Reactivity enhancement of oxide skins in reversible Ti-doped NaAlH4. AIP Adv 4:127130. https://doi.org/10.1063/1.4904428

    Article  CAS  Google Scholar 

  33. Unemoto A, Matsuo M, Orimo Si (2014) Complex hydrides for electrochemical energy storage. Adv Funct Mater 24:2267–2279. /abs/https://doi.org/10.1002/adfm.201303147

  34. Walters RT, Scogin JH (2004) A reversible hydrogen storage mechanism for sodium alanate: the role of alanes and the catalytic effect of the dopant. J Alloys Compd 379:135–142. https://doi.org/10.1016/j.jallcom.2004.04.155

    Article  CAS  Google Scholar 

  35. Bogdanović B, Schwickardi M (1997) Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J Alloys Compd 253:1–9. https://doi.org/10.1016/S0925-8388(96)03049-6

    Article  Google Scholar 

  36. Spoliti M, Sanna N, Di Martino V (1992) Ab initio study on the MBF4 and MAlF4 molecules. J Mol Struct THEOCHEM 258:83–107. https://doi.org/10.1016/0166-1280(92)85034-I

    Article  Google Scholar 

  37. Srinivasan SS, Sharma PC (2012) Enhancement of hydrogen storage behavior of complex hydrides via bimetallic nanocatalysts doping. Catalysts 2:434–446. https://doi.org/10.3390/catal2040434

    Article  CAS  Google Scholar 

  38. Zaluska A, Zaluski L, Ström-Olsen J (2000) Sodium alanates for reversible hydrogen storage. J Alloys Compd 298:125–134. https://doi.org/10.1016/S0925-8388(99)00666-0

    Article  CAS  Google Scholar 

  39. Orimo S-I, Nakamori Y, Kitahara G, Miwa K, Ohba N, Towata S-i, Züttel A (2005) Dehydriding and rehydriding reactions of LiBH4. J Alloys Compd 404:427–430. https://doi.org/10.1021/cr0501846

    Article  CAS  Google Scholar 

  40. Ojwang J, van Santen R, Kramer GJ, Ke X (2008) An ab initio study of possible pathways in the thermal decomposition of NaAlH4. J Solid State Chem 181:3037–3043. https://doi.org/10.1016/j.jssc.2008.08.010

    Article  CAS  Google Scholar 

  41. Tsere MH, Pogrebnaya TP, Pogrebnoi AM (2015) Complex hydrides Li2MH5 (M= B, Al) for hydrogen storage application: theoretical study of structure, vibrational spectra and thermodynamic properties. International Journal of Computational and Theoretical Chemistry 3:58–67. https://doi.org/10.11648/j.ijctc.20150306.13

    Article  Google Scholar 

  42. Wang J-q, Gao J-f, Wu Z-g, Ou G-l, Wang Y (2015) Synthesis of renewable energy materials, sodium aluminum hydride by grignard reagent of Al. J Nanomater 2015:1–5. https://doi.org/10.1155/2015/296486

  43. Andreasen A (2004) Predicting formation enthalpies of metal hydrides. Publishe, Denmark

  44. Granovsky AA. Firefly version 8.1.0. http://classic.chem.msu.su/gran/firefly/index.html

  45. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363. https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  46. Zhurko GA, Zhurko DA. Chemcraft version 1.7 (build 132). HTML: www.chemcraftprog.com

  47. Tokarev KL. “OpenThermo” v.1.0 Beta 1 (C) ed., 2007-2009. http://openthermo.software.informer.com/

  48. Wang J-q, Gao J-f, Wu Z-g, Ou G-l, Wang Y (2015) Synthesis of renewable energy materials, sodium aluminum hydride by grignard reagent of Al. J Nanomater 2015:1–5. https://doi.org/10.1155/2015/296486

  49. Gurvich LV, S YV, Bergman GA, V VI, Gusarov AV, Iorish VS, Leonidov VY, Medvedev VA, Belov GV, Aristova NM, Gorokhov LN, Dorofeeva OV, Ezhov YS, Efimov M. E., Krivosheya NS, Nazarenko II, Osina EL, Ryabova VG, Tolmach PI, Chandamirova NE, Shenyavskaya EA Thermodynamic Properties of individual Substances. Ivtanthermo for Windows Database on Thermodynamic Properties of Individual Substances and Thermodynamic Modeling Software, Version 3.0, Version (Glushko Thermocenter of RAS, Moscow, 1992-2000)

  50. Grochala W, Edwards PP (2004) Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem Rev 104:1283–1316. https://doi.org/10.1021/cr030691s

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

There were equal contributions of the authors to the completion of this work.

Corresponding author

Correspondence to Melkizedeck H. Tsere.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsere, M.H., Pogrebnaya, T.P. & Pogrebnoi, A.M. Gaseous complex hydrides NaMH4 and Na2MH5 (M = B, Al) as hydrogen storage materials: a quantum chemical study. J Mol Model 27, 2 (2021). https://doi.org/10.1007/s00894-020-04601-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04601-3

Keywords

Navigation