Skip to main content

Advertisement

Log in

Application of a quantum genetic algorithm and QTAIM analysis in the study of structural and electronic properties of neutral bimetallic clusters NaxLiy (4 ≤ x + y ≤ 10)

Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Alloy clusters of NaxLiy (4 ≤ x + y ≤ 10) are studied by exploring the potential energy surface in the ab initio MP2 level with the support of a quantum genetic algorithm (QGA). In some cases, the structures have been also refined with DFT and coupled-cluster methods. The general trends of sodium-lithium structures are in line with previous studies. The ionization potentials and polarizabilities to all structures were calculated with MP2 method and the average error between these two properties compared with experimental data was 6% and 13%, respectively. The topological analysis based on quantum theory of atoms in molecules (QTAIM) showed that by increasing the cluster size of the diatomic system there was a decrease of atomic interaction energies. The degree of degeneracy from D3BIA aromaticity index and the analysis of the atomic charges showed the influence (by charge transfer) of the chemical element in lower quantity in the cluster with respect to the other atoms. Our achievements of comparing our theoretical results with available experimental data have demonstrated that our approach can also predict satisfactorily quantum atomic and alloy clusters properties, at least, for low nuclearities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong K-T, Chen X (2019) Nanocarbons for biology and medicine: sensing, imaging, and drug delivery. Chem Rev 119(16):9559–9656. https://doi.org/10.1021/acs.chemrev.9b00099

    Article  CAS  PubMed  Google Scholar 

  2. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108(3):845–910. https://doi.org/10.1021/cr040090g

    Article  CAS  PubMed  Google Scholar 

  3. De Souza LA, Nogueira CAS, Lopes JF, Dos Santos HF, De Almeida WB (2013) DFT study of cisplatin@carbon nanohorns complexes. J Inorg Biochem 129:71–83. https://doi.org/10.1016/j.jinorgbio.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  4. Dos Santos HF, De Souza LA, De Almeida WB, Heine T (2014) Structure, stability, and infrared Spectrum of capped carbon cones: a DFTB study. J Phys Chem C 118:24761–24768. https://doi.org/10.1021/jp5070209

    Article  CAS  Google Scholar 

  5. De Souza LA, Nogueira CAS, Lopes JF, Dos Santos HF, De Almeida WB (2015) Theoretical study of the formation of inclusion complex between cisplatin and single-wall carbon nanotube. J Phys Chem C 119:8394–8401. https://doi.org/10.1021/acs.jpcc.5b01221

  6. De Souza LA, Nogueira CAS, Ortega PFR, Lopes JF, Calado HDR, Lavall RL, Silva GG, Dos Santos HF, De Almeida WB (2016) Inclusion complex between cisplatin and single-walled carbon nanotube: an integrated experimental and theoretical approach. Inorg Chim Acta 447:38–44. https://doi.org/10.1016/j.ica.2016.03.034

    Article  CAS  Google Scholar 

  7. De Souza LA, Dos Santos HF, Costa LT, De Almeida WB (2017) Inclusion complexes between cisplatin and oxidized carbon nanostructures: a theoretical approach. J Inorg Biochem 178:134–143. https://doi.org/10.1016/j.jinorgbio.2017.10.013

    Article  CAS  PubMed  Google Scholar 

  8. De Souza LA, Da Silva Jr AM, Dos Santos HF, De Almeida WB (2017) Oxidized single-walled carbon nanotubes and nanocones: a DFT study. RSC Adv 7:13212–13222. https://doi.org/10.1039/C7RA00301C

    Article  Google Scholar 

  9. Almeida ER, De Souza LA, De Almeida WB, Dos Santos HF (2019) Molecular dynamics of carbon nanohorns and their complexes with cisplatin in aqueous solution. J Mol Graph Model 89:167–177. https://doi.org/10.1016/j.jmgm.2019.03.015

    Article  CAS  PubMed  Google Scholar 

  10. Almeida ER, De Souza LA, De Almeida WB, Dos Santos HF (2020) Chemically modified carbon nanohorns as nanovectors of the cisplatin drug: a molecular dynamics study. J Chem Inf Model 60(2):500–512. https://doi.org/10.1021/acs.jcim.9b00775

    Article  CAS  PubMed  Google Scholar 

  11. Huang Y, Ren J, Qu X (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119:4357–4412. https://doi.org/10.1021/acs.chemrev.8b00672

    Article  CAS  PubMed  Google Scholar 

  12. Liu D, García-López V, Gunasekera RS, Nilewski LG, Alemany LB, Aliyan A, Jin T, Wang G, Tour JM, Pal R (2019) Near-infrared light activates molecular nanomachines to drill into and kill cells. ACS Nano 13(6):6813–6823. https://doi.org/10.1021/acsnano.9b01556

    Article  CAS  PubMed  Google Scholar 

  13. Shimizu T, Ding W, Kameta N (2020) Soft-matter nanotubes: a platform for diverse functions and applications. Chem Rev 120:2347–2407. https://doi.org/10.1021/acs.chemrev.9b00509

    Article  CAS  PubMed  Google Scholar 

  14. Nejad MA, Umstätter P, Urbassek HM (2020) Boron nitride nanotubes as containers for targeted drug delivery of doxorubicin. J Mol Model 26:54. https://doi.org/10.1007/s00894-020-4305-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vittala SK, Han D (2020) DNA-guided assemblies toward nanoelectronic applications. ACS Appl Bio Mater 3(5):2702–2722. https://doi.org/10.1021/acsabm.9b01178

    Article  CAS  PubMed  Google Scholar 

  16. Hou Y, Wang K, Yang D, Jiang Y, Yennawar N, Wang K, Sanghadasa M, Wu C, Priya S (2019) Enhanced performance and stability in DNA-perovskite heterostructure-based solar cells. ACS Energy Lett 4(11):2646–2655. https://doi.org/10.1021/acsenergylett.9b01894

    Article  CAS  Google Scholar 

  17. Ma F, Zhang Q, Zhang C (2019) Catalytic self-assembly of quantum-dot-based microRNA nanosensor directed by toehold-mediated strand displacement cascade. Nano Lett 19:6370–6376. https://doi.org/10.1021/acs.nanolett.9b02544

    Article  CAS  PubMed  Google Scholar 

  18. Comtet G, Dujardin G, Hellner L, Lastapis M, Martin M, Mayne AJ, Riedel D (2004) Atomic-scale STM experiments on semiconductor surfaces: towards molecular nanomachines. Philos Trans R Soc London, Ser A 362(1819):1217–1226. https://doi.org/10.1098/rsta.2004.1374

    Article  CAS  Google Scholar 

  19. Cristancho D, Benitez L, Seminario JM (2013) Coupling of mechanical and electronic properties of carbon nanotubes. J Mol Model 19:5237–5244. https://doi.org/10.1007/s00894-013-2019-1

    Article  CAS  PubMed  Google Scholar 

  20. Pan S, Barroso J, Jalife S, Heine T, Asmis KR, Merino G (2019) Fluxional boron clusters: from theory to reality. Acc Chem Res 52(9):2732–2744. https://doi.org/10.1021/acs.accounts.9b00336

    Article  CAS  PubMed  Google Scholar 

  21. Liu L, Corma A (2018) Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 118:4981–5079. https://doi.org/10.1021/acs.chemrev.7b00776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhunia S, Vyas N, Sahu C, Ojha AK (2014) Size dependent structural, electronic, and magnetic properties of ScN (N=2-14) clusters investigated by density functional theory. J Mol Model 20:2481. https://doi.org/10.1007/s00894-014-2481-4

    Article  CAS  PubMed  Google Scholar 

  23. Rao KP, Prasad YVRK, Dharmendra C, Suresh K, Hort N, Dieringa H (2018) Review on hot working behavior and strength of calcium-containing magnesium alloys. Adv Eng Mater 20(9):1701102. https://doi.org/10.1002/adem.201701102

    Article  CAS  Google Scholar 

  24. Ramírez-Dámaso G, Ramírez-Rodríguez O, Caballero F, Castillo-Alvarado FL, Roberge J, Solorza-Guzmán M, Rojas-Hernández E, Ortiz-Ubilla A, Romo-Rico D (2019) Chemisorption-repulsion energies of H2 on surface (110) of Mg1−xMx alloys (M = Al, Ni, Zn; 0.0 ≤ x ≤ 0.20) as a function of temperature. J Mol Model 25:326. https://doi.org/10.1007/s00894-019-4214-1

    Article  CAS  PubMed  Google Scholar 

  25. Liu S, Bao Z, Zhu K, Feng W, Sun H, Pang N (2020) Semiconducting antiferromagnet of Cr2FeSi and CrMn2Si Heusler compound films. J Mater Sci 55:7009–7015. https://doi.org/10.1007/s10853-020-04456-2

    Article  CAS  Google Scholar 

  26. Silva MX, Galvão BRL, Belchior JC (2014) Growth analysis of sodium-potassium alloy clusters from 7 to 55 atoms through a genetic algorithm approach. J Mol Model 20:2421. https://doi.org/10.1007/s00894-014-2421-3

    Article  CAS  PubMed  Google Scholar 

  27. Khairulin RA, Abdullaev RN, Stankus SV (2019) Phase equilibria and mutual diffusion in liquid lithium-sodium alloys. J Eng Thermophys 28:472–483. https://doi.org/10.1134/S1810232819040027

    Article  CAS  Google Scholar 

  28. Jost J, Heydt D, Spehr J, Ruppersberg H (1994) The density and heat capacity of liquid Li/Na alloys. J Phys Condens Matter 6:321–326. https://doi.org/10.1088/0953-8984/6/2/004

    Article  CAS  Google Scholar 

  29. Bale CW (1989) The Li-Na (lithium-sodium) system. Bull Alloy Phase Diagr 10:265–268. https://doi.org/10.1007/BF02877509

    Article  CAS  Google Scholar 

  30. Yagi J, Tanaka T, Muroga T, Sagara A (2014) Hydrogen solubility in liquid lithium–sodium alloys (90, 50, and 20 at% Li). Fusion Eng Des 89(7–8):1168–1171. https://doi.org/10.1016/j.fusengdes.2014.05.017

    Article  CAS  Google Scholar 

  31. Chen Y-M, Geng H-Y, Yan X-Z, Wang Z-W, Chen X-R, Wu Q (2017) Predicted novel insulating electrode compound between alkali metals lithium and sodium under high pressure. Chin Phys B 26(5):056102. https://doi.org/10.1088/1674-1056/26/5/056102

    Article  CAS  Google Scholar 

  32. Pérez JF, Florez E, Hadad CZ, Fuentealba P, Restrepo A (2008) Stochastic search of the quantum conformational space of small lithium and bimetallic lithium-sodium clusters. J Phys Chem A 112(25):5749–5755. https://doi.org/10.1021/jp802176w

    Article  CAS  PubMed  Google Scholar 

  33. Mohajeri A, Mahmoodinia M (2013) Structure and energetics of Li/Na, Li/K, and K/Na bimetallic hexamers. J Iran Chem Soc 10:1229–1237. https://doi.org/10.1007/s13738-013-0261-1

    Article  CAS  Google Scholar 

  34. Benichou E, Allouche AR, Aubert-Frecon M, Antoine R, Broyer M, Dugourd P, Rayane D (1998) Experimental and theoretical investigations of ionization potentials and structures of mixed sodium lithium clusters. Chem Phys Lett 290:171–179. https://doi.org/10.1016/S00092614(98)00513-2

    Article  CAS  Google Scholar 

  35. Huwig K, Grigoryan VG, Springborg M (2019) Global optimization of Li and Na clusters: application of a modified embedded atom method. J Clust Sci. https://doi.org/10.1007/s10876-019-01685-7

  36. Sun H, Ren Y, Wu Z, Xu N (2015) Density functional calculation of the growth, electronic and bonding properties of titanium clusters Tin (n = 2–20). Comput Theor Chem 1062:74–83. https://doi.org/10.1016/j.comptc.2015.03.021

    Article  CAS  Google Scholar 

  37. Doye JPK, Wales DJ (1997) Structural consequences of the range of the interatomic potential a menagerie of clusters. J Chem Soc Faraday Trans 93:4233–4243 https://doi.org/10.1039/A706221D

    Article  CAS  Google Scholar 

  38. Vargas JA, Buendía F, Beltrán MR (2017) New AuN (N=27–30) lowest energy clusters obtained by means of an improved DFT–genetic algorithm methodology. J Phys Chem C 121(20):10982–10991. https://doi.org/10.1021/acs.jpcc.6b12848

    Article  CAS  Google Scholar 

  39. Jäger M, Schäfer R, Johnston RL (2018) First principles global optimization of metal clusters and nanoalloys. Adv Phys: X 3(1):1516514. https://doi.org/10.1080/23746149.2018.1516514

    Article  CAS  Google Scholar 

  40. Rabanal-León WA, Tiznado W, Osorio E, Ferraro F (2018) Exploring the potential energy surface of small lead clusters using the gradient embedded genetic algorithm and an adequate treatment of relativistic effects. RSC Adv 8:145–152. https://doi.org/10.1039/C7RA11449D

    Article  Google Scholar 

  41. Daud MN (2019) Structural, electronic and magnetic properties of stoichiometric cobalt oxide clusters (CoO)nq (n=3−10, q=0, +1): a modified basin-hopping Monte Carlo algorithm with spin-polarized DFT. J Theor Comput Chem 18:1950003. https://doi.org/10.1142/S0219633619500032

    Article  CAS  Google Scholar 

  42. Yang Y-H, Zhang J-F, Wang J-B, Xu X-B, Shao G-B, Wen Y-H (2019) Spark-based improved Basin-Hopping Monte Carlo algorithm for structural optimization of alloy clusters. Phys Lett A 383(5):464–470. https://doi.org/10.1016/j.physleta.2018.11.006

    Article  CAS  Google Scholar 

  43. De Souza DG, Cezar HM, Rondina GG, De Oliveira MF, Da Silva JLF (2016) A basin-hopping Monte Carlo investigation of the structural and energetic properties of 55- and 561-atom bimetallic nanoclusters: the examples of the ZrCu, ZrAl, and CuAl systems. J Phys Condens Matter 28(17):175302. https://doi.org/10.1088/0953-8984/28/17/175302

    Article  CAS  PubMed  Google Scholar 

  44. Lazauskas T, Sokol AA, Buckeridge J, Catlow CRA, Escher SGET, Farrow MR, Mora-Fonz D, Blum VW, Phaahla TM, Chauke HR, Ngoepe PE, Woodley SM (2018) Thermodynamically accessible titanium clusters TiN, N=2-32. Phys Chem Chem Phys 20:13962–13973. https://doi.org/10.1039/C8CP00406D

    Article  CAS  PubMed  Google Scholar 

  45. Silva FT, Galvão BRL, Voga GP, Silva MX, Rodrigues DDC, Belchior JC (2015) Exploring the MP2 energy surface of nanoalloy clusters with a genetic algorithm: application to sodium–potassium. Chem Phys Lett 639:135–141. https://doi.org/10.1016/j.cplett.2015.09.016

    Article  CAS  Google Scholar 

  46. Araújo DM, da Costa TF, Firme CL (2015) Validation of the recently developed aromaticity index D3BIA for bezenoid systems. Case study: acenes. J Mol Model 21:248. https://doi.org/10.1007/s00894-015-2791-1

    Article  CAS  PubMed  Google Scholar 

  47. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Van Eikema Hommes NJR (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118(26):6317–6318. https://doi.org/10.1021/ja960582d

    Article  CAS  PubMed  Google Scholar 

  48. Strager A (2006) Nucleus-independent chemical shifts (NICS): distance dependence and revised criteria for aromaticity and antiaromaticity. J Organomet Chem 71(3):883–893. https://doi.org/10.1021/jo051746o

    Article  CAS  Google Scholar 

  49. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310. https://doi.org/10.1063/1.448975

    Article  CAS  Google Scholar 

  50. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363. https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford

    Google Scholar 

  52. Gready JE, Bacskay GB, Hush NS (1977) Finite-field method calculations of molecular polarisabilities. I. Theoretical basis and limitations of SCF and Galerkin treatments. Chem Phys 22(1):141–150. https://doi.org/10.1016/0301-0104(77)85217-8

    Article  CAS  Google Scholar 

  53. Bader RFW (1990) Atoms in molecules - a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  54. Keith TA (2019) AIMAll (version 19.10.12). TK Gristmill Software, Overland Park

    Google Scholar 

  55. Biegler-Konig F, Schonbohm J, Bayles D (2001) AIM2000-A program to analyze and visualize atoms in molecules. J Comput Chem 22(5):545–559. https://doi.org/10.1002/1096-987X(20010415)22:5<545::AID-JCC1027>3.0.CO;2-Y

    Article  Google Scholar 

  56. Alexandrova AN, Boldyrev AI (2005) Search for the Li n 0/+1/−1 (n = 5−7) lowest-energy structures using the ab initio gradient embedded genetic algorithm (GEGA). Elucidation of the chemical bonding in the lithium clusters. J Chem Theory Comput 1(4):566–580. https://doi.org/10.1021/ct050093g

    Article  CAS  PubMed  Google Scholar 

  57. Goel N, Gautam S, Dharamvir K (2012) Density functional studies of LiN and LiN+ (N = 2-30) clusters: structure, binding and charge distribution. Int J Quantum Chem 112(2):575–586. https://doi.org/10.1002/qua.23022

    Article  CAS  Google Scholar 

  58. Centeno J, Fuentealba P (2011) Big bang methodology applied to atomic clusters. Int J Quantum Chem 111(7–8):1419–1435. https://doi.org/10.1002/qua.22860

    Article  CAS  Google Scholar 

  59. Deshpande MD, Kanhere DG, Vasiliev I, Martin RM (2002) Density-functionalstudy of structural and electronic properties of NanLi and LinNa (1<n<12) clusters. Phys Rev A 65(3):033202. https://doi.org/10.1103/PhysRevA.65.033202

    Article  CAS  Google Scholar 

  60. Dzuba VA, Safronova MS, Safronova UI, Kramida A (2016) Ionization potentials of superheavy elements No, Lr, and Rf and their ions. Phys Rev A 94(4):042503. https://doi.org/10.1103/PhysRevA.94.042503

    Article  CAS  Google Scholar 

  61. Chandrakumar KRS, Ghanty TK, Ghosh SK (2004) Relationship between ionization potential, polarizability, and softness: a case study of lithium and sodium metal clusters. J Phys Chem A 108(32):6661–6666. https://doi.org/10.1021/jp048522e

    Article  CAS  Google Scholar 

  62. Popelier PLA (2014) The QTAIM perspective of chemical bonding. The chemical bond. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 271–308

    Chapter  Google Scholar 

  63. Bader RFW (2009) Bond paths are not chemical bonds. J Phys Chem A 113(38):10391–10396. https://doi.org/10.1021/jp906341r

    Article  CAS  PubMed  Google Scholar 

  64. Gatti C, Fantucci P, Pacchioni G (1987) Charge density topological study of bonding in lithium clusters. Theor Chim Acta 72:433–458. https://doi.org/10.1007/BF01192234

    Article  CAS  Google Scholar 

  65. Cao WL, Gatti C, MacDougall PJ, Bader RFW (1987) On the presence of non-nuclear attractors in the charge distributions of Li and Na clusters. Chem Phys Lett 141(5):380–385. https://doi.org/10.1016/0009-2614(87)85044-3

    Article  CAS  Google Scholar 

  66. Azizi A, Momen R, Xu T, Kirk SR, Jenkins S (2018) Non-nuclear attractors in small charged lithium clusters, Li m q (m = 2–5, q = ±1), with QTAIM and the Ehrenfest force partitioning. Phys Chem Chem Phys 20:24695–24707. https://doi.org/10.1039/C8CP05214J

    Article  CAS  PubMed  Google Scholar 

  67. Firme C, Antunes O, Esteves P (2009) Relation between bond order and delocalization index of QTAIM. Chem Phys Lett 468(4–6):129–133. https://doi.org/10.1016/j.cplett.2008.12.004

    Article  CAS  Google Scholar 

  68. Farrugia LJ, Evans C, Tegel M (2006) Chemical bonds without “chemical bonding”? A combined experimental and theoretical charge density study on an iron trimethylenemethane complex. J Phys Chem A 110(25):7952–7961. https://doi.org/10.1021/jp061846d

    Article  CAS  PubMed  Google Scholar 

  69. Lane JR, Contreras-García J, Piquemal J-P, Miller BJ, Kjaergaard HG (2013) Are bond critical points really critical for hydrogen bonding? J Chem Theory Comput 9(8):3263–3266. https://doi.org/10.1021/ct400420r

    Article  CAS  PubMed  Google Scholar 

  70. Lima dos Santos HF, Pontes DL, Firme CL (2013) Relation between topology and stability of bent titanocenes. J Mol Model 19:2955–2964. https://doi.org/10.1007/s00894-013-1817-9

  71. Bader RFW, Essén H (1984) The characterization of atomic interactions. J Chem Phys 80(5):1943–1960. https://doi.org/10.1063/1.446956

    Article  CAS  Google Scholar 

  72. Bader RFW (1994) Principle of stationary action and the definition of a proper open system. Phys Rev B 49:13348–13356. https://doi.org/10.1103/PhysRevB.49.13348

    Article  CAS  Google Scholar 

  73. Popelier PLA (2000) Atoms in molecules. An introduction. Pearson Education, Harlow

    Google Scholar 

  74. Gibbs GV, Spackman MA, Jayatilaka D, Rosso KM, Cox DF (2006) Bond length and local energy density property connections for non-transition-metal oxide-bonded interactions. J Phys Chem A 110:12259–12266. https://doi.org/10.1021/jp062992m

    Article  CAS  PubMed  Google Scholar 

  75. Firme CL, Pontes DL, Antunes OAC (2010) Topological study of bis (cyclopentadienyl) titanium and bent titanocenes. Chem Phys Lett 499:193–198. https://doi.org/10.1016/j.cplett.2010.09.038

  76. Silva Lopez C, de Lera R, A. (2011) Bond ellipticity as a measure of electron delocalization in structure and reactivity. Curr Org Chem 15:3576–3593. https://doi.org/10.2174/138527211797636228

    Article  Google Scholar 

  77. Firme CL (2019) Introductory organic chemistry and hydrocarbons: a physical chemistry approach1st edn. Crc Press, Boca Raton

    Book  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the physical structure and computational support provided by Universidade Federal da Paraíba (UFPB), the computer resources of Centro Nacional de Processamento de Alto Desempenho em São Paulo (CENAPAD-SP), and Núcleo de Processamento de Alto Desempenho of Universidade Federal do Rio Grande do Norte (NPAD/UFRN). L. A. De Souza thanks the CAPES for a Post-Doctoral scholarship at Universidade Federal de Minas Gerais (Proc. No. 88887.363111/2019-00).

Funding

This study was financially supported by the Brazilian agencies, institutes, and networks: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES), and Fundação de Apoio à Pesquisa do Estado da Paraíba (FAPESQ-PB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jadson C. Belchior.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection XX - Brazilian Symposium of Theoretical Chemistry (SBQT2019)

Electronic supplementary material

ESM 1

(PDF 885 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, F.T., Rocha-Santos, A., Firme, C.L. et al. Application of a quantum genetic algorithm and QTAIM analysis in the study of structural and electronic properties of neutral bimetallic clusters NaxLiy (4 ≤ x + y ≤ 10). J Mol Model 26, 317 (2020). https://doi.org/10.1007/s00894-020-04576-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04576-1

Keywords

Navigation