Skip to main content
Log in

New pathways of stability for NHCs derived from azole, di-azole, n-tetrazole, and ab-tetrazole, by DFT

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have investigated the pathways of stability for NHCs derived from azole, di-azole, n-tetrazole, and ab-tetrazole (1a, 2a, 3a, and 4a, respectively), at the M06/6-311++G** level of theory. Optimization and vibrational frequency calculations of ground states (GS) and transition states (TS) are performed to identify Gibbs free energies and nature of stationary points, respectively. Two possible pathways of stability for 1a-4a are compared and contrasted which entail dimerization through hydrogen bonding (HB) and covalent bonding (CB). The CB pathway comprises head to head (HH) and head to tail (HT) dimerizations. Plausible reaction profiles are illustrated for 1a-4a along with the mechanism of each dimerization. Structures 1a-3a show one possibility for HB while 4a represents two possibilities. Structures 1a and 4a display two HH dimers while 2a and 3a show one. Structures 1a-4a undergo HT dimerizations to yield three possible dimers which include trans, cis, and [2+3] isomers. Interestingly, for all 1a-4a, HB dimerization turns out as the most favorable stability pathway for showing no barrier of reaction. Structures 4b and 4c indicate the highest stability with respect to their initial 4a compared to remaining HB dimers 1b-3b. In addition, the 1,2-H shift appears as a possible rearrangement for 1a-4a to yield their corresponding tautomers (1i, 2h, 3h, and 4k, respectively). The reaction profile of this rearrangement indicates that 1a-4a favor HB dimerization pathway more than 1,2-H shift, in terms of kinetic and thermodynamic.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gaillard S, Renaud J-L (2013) Dalton Trans 42:7255–7270

    CAS  PubMed  Google Scholar 

  2. Clavier H, Nolan SP (2010) Chem Commun 46:841–861

    CAS  Google Scholar 

  3. Berthon-Gelloz G, Siegler MA, Spek AL, Tinant B, Reek JNH, Markó IE (2010) Dalton Trans 39:1444–1446

    CAS  PubMed  Google Scholar 

  4. Fortman GC, Nolan SP (2011) Chem Soc Rev 40:5151–5169

    CAS  PubMed  Google Scholar 

  5. Schuster O, Yang L, Raubenheimer HG, Albrecht M (2009) Chem Rev 109:3445–3478

    CAS  PubMed  Google Scholar 

  6. Fürstner A, Ackermann L, Gabor B, Goddard R, Lehmann CW, Mynott R, Stelzer F, Thiel OR (2001) Chem Eur J 7:3236–3253

    PubMed  Google Scholar 

  7. Scott NM, Nolan SP (2005) Eur J Inorg Chem 2005:1815–1828

    Google Scholar 

  8. Marelius DC, Darrow EH, Moore CE, Golen JA, Rheingold AL, Grotjahn DB (2015) Chem Eur J 21:10988–10992

    CAS  PubMed  Google Scholar 

  9. Bellemin-Laponnaz S, Dagorne S (2014) Chem Rev 114:8747–8774

    CAS  PubMed  Google Scholar 

  10. Lin JCY, Huang RTW, Lee CS, Bhattacharyya A, Hwang WS, Lin IJB (2009) Chem Rev 109:3561–3598

    CAS  PubMed  Google Scholar 

  11. Herrmann WA, Schütz J, Frey GD, Herdtweck E (2006) Organometallics 25:2437–2448

    CAS  Google Scholar 

  12. Liddle ST, Edworthy IS, Arnold PL (2007) Chem Soc Rev 36:1732–1744

    CAS  PubMed  Google Scholar 

  13. Arduengo III AJ, Harlow RL, Kline M (1991) J Am Chem Soc 113:361–363

    CAS  Google Scholar 

  14. Crudden CM, Allen DP (2004) Coord Chem Rev 248:2247–2273

    CAS  Google Scholar 

  15. Heinemann C, Thiel W (1994) Chem Phys Lett 217:11–16

    CAS  Google Scholar 

  16. Cheng M-J, Hu C-H (2000) Chem Phys Lett 322:83–90

    CAS  Google Scholar 

  17. Cheng M-J, Hu C-H (2001) Chem Phys Lett 349:477–482

    CAS  Google Scholar 

  18. Graham DC, Cavell KJ, Yates BF (2005) J Phys Org Chem 18:298–309

    CAS  Google Scholar 

  19. Alder RW, Blake ME, Chaker L, Harvey JN, Paolini F, Schütz J (2004) Angew Chem Int Ed 43:5896–5911

    CAS  Google Scholar 

  20. Carter EA, Goddard III WA (1986) J Phys Chem 90:998–1001

    CAS  Google Scholar 

  21. Liu Y, Lindner PE, Lemal DM (1999) J Am Chem Soc 121:10626–10627

    CAS  Google Scholar 

  22. Nyulászi L, Veszprémi T, Forró A (2000) Phys Chem Chem Phys 2:3127–3129

    Google Scholar 

  23. Denk MK, Hezarkhani A, Zheng F (2007) Eur J Inorg Chem 2007:3527–3534

    Google Scholar 

  24. Poater A, Ragone F, Giudice S, Costabile C, Dorta R, Nolan SP, Cavallo L (2008) Organometallics 27:2679–2681

    CAS  Google Scholar 

  25. Heinemann C, Müller T, Apeloig Y, Schwarz H (1996) J Am Chem Soc 118:2023–2038

    CAS  Google Scholar 

  26. Boehme C, Frenking G (1996) J Am Chem Soc 118:2039–2046

    CAS  Google Scholar 

  27. Öfele K (1968) J Organomet Chem 12:P42–P43

    Google Scholar 

  28. Wanzlick HW (1962) Angew Chem Int Ed Eng 1:75–80

    Google Scholar 

  29. Wanzlick H, Schönherr H (1968) Angew Chem Int Ed Eng 7:141–142

    CAS  Google Scholar 

  30. Denk MK, Hatano K, Ma M (1999) Tetrahedron Lett 40:2057–2060

    CAS  Google Scholar 

  31. Hahn FE, Wittenbecher L, Le Van D, Fröhlich R (2000) Angew Chem Int Ed 39:541–544

    CAS  Google Scholar 

  32. Izquierdo J, Hutson GE, Cohen DT, Scheidt KA (2012) Angew Chem Int Ed 51:11686–11698

    CAS  Google Scholar 

  33. Chauhan P, Enders D (2014) Angew Chem Int Ed 53:1485–1487

    CAS  Google Scholar 

  34. Bugaut X, Glorius F (2012) Chem Soc Rev 41:3511–3522

    CAS  PubMed  Google Scholar 

  35. Cheng J, Huang Z, Chi YR (2013) Angew Chem Int Ed 52:8592–8596

    CAS  Google Scholar 

  36. Singha S, Patra T, Daniliuc CG, Glorius F (2018) J Am Chem Soc 140:3551–3554

    CAS  PubMed  Google Scholar 

  37. Wang Y, Zhang S-R, Wang Y, Qu L-B, Wei D. Org Chem Front 5:2065–2072

  38. Zaragozá RJ, Aurell MJ, González-Cardenete MA (2018) Org Biomol Chem 16:5474–5482

    PubMed  Google Scholar 

  39. Zhang Q, Yu H-Z, Fu Y (2014) Org Chem Front 1:614–624

    CAS  Google Scholar 

  40. Sen TK, Sau SC, Mukherjee A, Modak A, Mandal SK, Koley D (2011) Chem Commun 47:11972–11974

    CAS  Google Scholar 

  41. Gabrielli WF, Nogai SD, McKenzie JM, Cronje S, Raubenheimer HG (2009) New J Chem 33:2208–2218

    CAS  Google Scholar 

  42. Wang X-S, Tang Y-Z, Huang X-F, Qu Z-R, Che C-M, Chan PWH, Xiong R-G (2005) Inorg Chem 44:5278–5285

    CAS  PubMed  Google Scholar 

  43. Schaper L-A, Wei X, Altmann PJ, Öfele K, PÖthig A, Drees M, Mink J, Herdtweck E, Bechlars B, Herrmann WA (2013) Inorg Chem 52:7031–7044

    CAS  PubMed  Google Scholar 

  44. Guisado-Barrios G, Bouffard J, Donnadieu B, Bertrand G (2010) Angew Chem Int Ed 49:4759–4762

    CAS  Google Scholar 

  45. Dyker CA, Bertrand G (2008) Science 321:1050–1051

    CAS  PubMed  Google Scholar 

  46. Wang Y, Robinson GH (2012) Dalton Trans 41:337–345

    CAS  PubMed  Google Scholar 

  47. Wang Y, Xie Y, Wei P, King RB, Schaefer HF, von Schleyer PR, Robinson GH (2008) Science 321:1069–1071

    CAS  PubMed  Google Scholar 

  48. Jones C, Sidiropoulos A, Holzmann N, Frenking G, Stasch A (2012) Chem Commun 48:9855–9857

    CAS  Google Scholar 

  49. Wang Y, Xie Y, Wei P, King RB, Schaefer III HF, von Schleyer PR, Robinson GH (2008) J Am Chem Soc 130:14970–14971

    CAS  PubMed  Google Scholar 

  50. Abraham MY, Wang Y, Xie Y, Wei P, Schaefer III HF, von Schleyer PR, Robinson GH (2010) Chem Eur J 16:432–435

    CAS  PubMed  Google Scholar 

  51. Holzmann N, Stasch A, Jones C, Frenking G (2011) Chem Eur J 17:13517–13525

    CAS  PubMed  Google Scholar 

  52. Couchman SA, Holzmann N, Frenking G, Wilson DJD, Dutton JL (2013) Dalton Trans 42:11375–11384

    CAS  PubMed  Google Scholar 

  53. Bonyhady SJ, Collis D, Frenking G, Holzmann N, Jones C, Stasch A (2010) Nat Chem 2:865

    CAS  PubMed  Google Scholar 

  54. Arduengo AJIII, Gamper SF, Tamm M, Calabrese JC, Davidson F, Craig HA (1995) J Am Chem Soc 117:572–573

    CAS  Google Scholar 

  55. Cowan JA, Clyburne JAC, Davidson MG, Harris RLW, Howard JAK, Küpper P, Leech MA, Richards SP (2002) Angew Chem 114:1490–1492

    Google Scholar 

  56. Dong K, Zhang S, Wang D, Yao X, Phys J (2006) Chem A 110:9775–9782

    CAS  Google Scholar 

  57. Hollóczki O (2016) Phys Chem Chem Phys 18:126–140

    PubMed  Google Scholar 

  58. Alkorta I, Elguero J (1998) Chem Soc Rev 27:163–170

    CAS  Google Scholar 

  59. Alkorta I, Elguero J (1996) J Phys Chem 100:19367–19370

    CAS  Google Scholar 

  60. Bertrand G (2004) React Intermed Chem 4:329–373

  61. Baird NC, Taylor KF (1978) J Am Chem Soc 100:1333–1338

    CAS  Google Scholar 

Download references

Acknowledgments

Support from the Tarbiat Modares University is gratefully acknowledged.

Funding

This study was funded by the Tarbiat Modares University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Z. Kassaee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, A., Kassaee, M.Z., Ayoubi-Chianeh, M. et al. New pathways of stability for NHCs derived from azole, di-azole, n-tetrazole, and ab-tetrazole, by DFT. J Mol Model 26, 324 (2020). https://doi.org/10.1007/s00894-020-04575-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04575-2

Keywords

Navigation