Skip to main content
Log in

Adsorption of acetylene on Sn-doped Ni(111) surfaces: a density functional study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

First-principle density functional theory calculations have been performed to investigate the adsorption of C2H2 on Ni(111) and Sn@Ni(111) at different coverages. At low coverage, the C2H2 molecule is strongly adsorbed on Ni(111) and the dissociation of the H atom is not favorable. Furthermore, the more the H atom dissociated, the more unstable the system is. However, the dissociation structure of C2H+H has the largest adsorption energy on Sn@Ni(111), indicating that the dissociation structure is more stable than molecular adsorbed C2H2. At moderate coverage, there is some repulsive interaction between two C2H2 molecules, inducing the decrease in adsorption energy. On Ni(111), the two C2H2 tend to adsorb separately, however, the dimer C4H4 has the largest adsorption energy on Sn@Ni(111). At high coverage, the trimer derivative benzene has the largest adsorption energy on both Ni(111) and Sn@Ni(111) surfaces. The adsorption energies of the formed benzene are very high on the two systems, even larger than those of three individual adsorbed C2H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lyu Y-J, Qi T, Yang H-Q, Hu C-W (2018) Performance of edges on carbon for the catalytic hydroxylation of benzene to phenol. Cat Sci Technol 8(1):176–186

    Article  CAS  Google Scholar 

  2. Larraz R (2001) Benzene reduction in naphtha catalytic reforming 6:61–64

  3. Li N, Meng C, Liu D (2018) Deactivation kinetics with activity coefficient of the methanol to aromatics process over modified ZSM-5. Fuel 233:283–290

    Article  CAS  Google Scholar 

  4. Pan G, Jun X, Guodong Q, Chao W, Qiang W, Yanxi Z, Yuhua Z, Ningdong F, Xingling Z, Jinlin L (2018) A mechanistic study of methanol-to-aromatics reaction over Ga-modified ZSM-5 zeolites: understanding the dehydrogenation process. ACS Catal 8(10):9809–9820

    Article  Google Scholar 

  5. Lee J, Kim JC, Kim Y (1990) Methyl formate as a new building block in C1 chemistry. Appl Catal 57:1–30

    Article  CAS  Google Scholar 

  6. Reppe W, Schlichting O, Klager K, Toepel T (1948) Cyclisierende Polymerisation von Acetylen I Über Cyclooctatetraen. Justus Liebigs Ann Chem 560(1):1–92

    Article  CAS  Google Scholar 

  7. Trotuş I-T, Zimmermann T, Schüth F (2014) Catalytic reactions of acetylene: a feedstock for the chemical industry revisited. Chem Rev 114(3):1761–1782

    Article  PubMed  Google Scholar 

  8. Trimm DL, Liu IOY, Cant NW (2009) The effect of carbon monoxide on the oligomerization of acetylene in hydrogen over a Ni/SiO2 catalyst. J Mol Catal A Chem 307(1–2):13–20

    Article  CAS  Google Scholar 

  9. Rao D-M, Sun T, Yang Y-S, Yin P, Pu M, Yan H, Wei M (2019) Theoretical study on the reaction mechanism and selectivity of acetylene semi-hydrogenation on Ni−Sn intermetallic catalysts. Phys Chem Chem Phys 21(3):1384–1392

    Article  CAS  PubMed  Google Scholar 

  10. Kim W-J, Moon SH (2012) Modified Pd catalysts for the selective hydrogenation of acetylene. Catal Today 185(1):2–16

    Article  CAS  Google Scholar 

  11. Zhang R, Xue M, Wang B, Ling L, Fan M (2019) C2H2 selective hydrogenation over the M@Pd and M@Cu (M = Au, Ag, Cu, and Pd) core−shell nanocluster catalysts: the effects of composition and nanocluster size on catalytic activity and selectivity. J Phys Chem C 123(26):16107–16117

    Article  CAS  Google Scholar 

  12. Ahn IY, Lee JH, Kim SK, Moon SH (2009) Three-stage deactivation of Pd/SiO2 and Pd-Ag/SiO2 catalysts during the selective hydrogenation of acetylene. Appl Catal A Gen 360(1):38–42

    Article  CAS  Google Scholar 

  13. McCue AJ, Shepherd AM, Anderson JA (2015) Optimisation of preparation method for Pd doped Cu/Al2O3 catalysts for selective acetylene hydrogenation. Cat Sci Technol 5(5):2880–2890

    Article  CAS  Google Scholar 

  14. Stytsenko VD, Mel’nikov DP, Tkachenko OP, Savel’eva EV, Semenov AP, Kustov LM (2018) Selective hydrogenation of acetylene and physicochemical properties of Pd−Fe/Al2O3 bimetallic catalysts. Russ J Phys Chem A 92(5):862–869

    Article  CAS  Google Scholar 

  15. Menezes WG, Altmann L, Zielasek V, Thiel K, Bäumer M (2013) Bimetallic Co−Pd catalysts: study of preparation methods and their influence on the selective hydrogenation of acetylene. J Catal 300:125–135

    Article  CAS  Google Scholar 

  16. Esmaeili E, Rashidi AM, Khodadadi AA, Mortazavi Y, Rashidzadeh M (2014) Palladium−tin nanocatalysts in high concentration acetylene hydrogenation: a novel deactivation mechanism. Fuel Process Technol 120:113–122

    Article  CAS  Google Scholar 

  17. Wang Z, Yang L, Zhang R, Li L, Cheng Z, Zhou Z (2016) Selective hydrogenation of phenylacetylene over bimetallic Pd−Cu/Al2O3 and Pd−Zn/Al2O3 catalysts. Catal Today 264:37–43

    Article  CAS  Google Scholar 

  18. Prinz J, Pignedoli CA, Stöckl QS, Armbrüster M, Brune H, Gröning O, Widmer R, Passerone D (2014) Adsorption of small hydrocarbons on the three-fold PdGa surfaces: the road to selective hydrogenation. J Am Chem Soc 136(33):11792–11798

    Article  CAS  PubMed  Google Scholar 

  19. Doyle AM, Shaikhutdinov SK, Freund H-J (2004) Alkene chemistry on the palladium surface: nanoparticles vs single crystals. J Catal 223(2):444–453

    Article  CAS  Google Scholar 

  20. Chen Y, Chen J (2016) Selective hydrogenation of acetylene on SiO2 supported Ni-In bimetallic catalysts: promotional effect of In. Appl Surf Sci 387:16–27

    Article  CAS  Google Scholar 

  21. Wang L, Li F, Chen Y, Chen J (2019) Selective hydrogenation of acetylene on SiO2-supported Ni-Ga alloy and intermetallic compound. J Energy Chem 29:40–49

    Article  Google Scholar 

  22. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50

    Article  CAS  Google Scholar 

  23. Ramalho JPP, Gomes JRB, Illas F (2013) Accounting for van der Waals interactions between adsorbates and surfaces in density functional theory based calculations: selected examples. RSC Adv 3(32):13085–13100

    Article  CAS  Google Scholar 

  24. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32(7):1456–1465

    Article  CAS  PubMed  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  26. Blöchl PE, Först CJ, Schimpl J (2003) Projector augmented wave method: ab initio molecular dynamics with full wave functions. Bull Mater Sci 26(1):33–41

    Article  Google Scholar 

  27. Jette ER, Foote F (1935) Precision determination of lattice constants. J Chem Phys 3(10):605–616

    Article  CAS  Google Scholar 

  28. Rao D-M, Zhang S-T, Li C-M, Chen Y-D, Pu M, Yan H, Wei M (2018) The reaction mechanism and selectivity of acetylene hydrogenation over Ni−Ga intermetallic compound catalysts: a density functional theory study. Dalton Trans 47(12):4198–4208

    Article  CAS  PubMed  Google Scholar 

  29. Hu M, Yang W, Liu S, Zhu W, Li Y, Hu B, Chen Z, Shen R, Cheong W-C, Wang Y, Zhou K, Peng Q, Chen C, Li Y (2019) Topological self-template directed synthesis of multi-shelled intermetallic Ni3Ga hollow microspheres for the selective hydrogenation of alkyne. Chem Sci 10(2):614–619

    Article  CAS  PubMed  Google Scholar 

  30. Yang B, Burch R, Hardacre C, Headdock G, Hu P (2012) Origin of the increase of activity and selectivity of nickel doped by Au, Ag, and Cu for acetylene hydrogenation. ACS Catal 2(6):1027–1032

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (nos. 21763018 and 21875096), Jiangxi Natural Science Foundation (20181BAB203016), the Open Foundation of Provincial Research Platform of Jiangxi Science and Technology Normal University (KFGJ18008), and New Staff Start-up Research Fund from the School of Chemical and Biological Engineering, Taiyuan University of Science and Technology (20182025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Zhang, Lihong Cheng or Gang Feng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yang, J., Cheng, L. et al. Adsorption of acetylene on Sn-doped Ni(111) surfaces: a density functional study. J Mol Model 26, 310 (2020). https://doi.org/10.1007/s00894-020-04568-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04568-1

Keywords

Navigation