Skip to main content
Log in

A molecular dynamics study on the thermal properties of carbon-based gold nanoparticles

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Due to unique features in surface activity, thermal stability, electrical and thermal conductivity, and compatibility with biomolecules such as DNA and proteins, carbon-based nanoparticles are raised potential as a candidate for various applications such as catalytic processes, drug delivery, light, and electrical engineering. Based on this premise, thermodynamic features of pure, graphene, and carbon nanotube (CNT)-based gold nanoparticles (AuNPs) are investigated using molecular dynamics approach. Melting, heat capacity, thermal conductivity, contact angle of molten AuNPs, and phase transition are calculated as indicators of thermodynamic properties of pure and carbon-based AuNPs. Simulation results indicate that the presence of a carbon platform and its contact surface area has a significant role in the thermodynamic properties of AuNPs and leads the phononic heat capacity and thermal conductivity to decrease for AuNPs. The platform also causes the melting point temperature of AuNPs to increase. The melting of gold on the carbon base is of the first-order type. In addition, contact angle for molten AuNPs on the Graphene is significantly higher than the one on the CNT due to more contact area on the Graphene substrate.

Graphical abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fedlheim DL, Foss CA (2001) Metal nanoparticles: synthesis, characterization, and applications. CRC press

  2. Goncalves G, Marques PA, Granadeiro CM, Nogueira HI, Singh M, Gracio J (2009) Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem Mater 21:4796–4802

    CAS  Google Scholar 

  3. Bhattacharya P, Lin S, Turner JP, Ke PC (2010) Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J Phys Chem C 114:16556–16561

    CAS  Google Scholar 

  4. Yang S, Pelton R, Raegen A, Montgomery M, Dalnoki-Veress K (2011) Nanoparticle flotation collectors: mechanisms behind a new technology. Langmuir 27:10438–10446

    CAS  PubMed  Google Scholar 

  5. Hvolbæk B, Janssens TV, Clausen BS, Falsig H, Christensen CH, Nørskov JK (2007) Catalytic activity of au nanoparticles. Nano Today 2:14–18

    Google Scholar 

  6. Sun L, Yang X, Wu B, Tang L (2011) Molecular simulation of interaction between passivated gold nanoparticles in supercritical CO2. J Chem Phys 135:204703

    PubMed  Google Scholar 

  7. Dou S, Li X, Tao L, Huo J, Wang S (2016) Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated co 3 O 4 for oxygen electrocatalysis. Chem Commun 52:9727–9730

    CAS  Google Scholar 

  8. Sanchez A, Abbet S, Heiz U, Schneider W-D, Häkkinen H, Barnett R, Landman U (1999) When gold is not noble: nanoscale gold catalysts. J Phys Chem A 103:9573–9578

    CAS  Google Scholar 

  9. Krauss TD, Eisenberg R, Holland P, Qiu F, Han Z (2019) Methods for producing hydrogen using nanoparticle-catalyst mixtures. Google Patents

  10. Tafrishi H, Sadeghzadeh S, Molaei F, Siavoshi H (2020) Investigating the effects of adding hybrid nanoparticles, graphene and boron nitride nanosheets, to octadecane on its thermal properties. RSC Adv 10:14785–14793

    CAS  Google Scholar 

  11. Elsayed I, Mashaly M, Eltaweel F, Jackson MA (2018) Dehydration of glucose to 5-hydroxymethylfurfural by a core-shell Fe3O4@ SiO2-SO3H magnetic nanoparticle catalyst. Fuel 221:407–416

    CAS  Google Scholar 

  12. Schlexer P, Widmann D, Behm RJR, Pacchioni G (2018) CO oxidation on a Au/TiO2 nanoparticle catalyst via the au-assisted Mars–van Krevelen Mechanism. ACS Catal 8:6513–6525

    CAS  Google Scholar 

  13. Callejas-Tovar R, Liao W, Martinez de la Hoz JM, Balbuena PB (2011) Molecular dynamics simulations of surface oxidation on Pt (111) and Pt/PtCo/Pt3Co (111). J Phys Chem C 115:4104–4113

    CAS  Google Scholar 

  14. Puértolas B, Mayoral Á, Arenal R, Solsona B, Moragues A, Murcia-Mascaros S, Amorós P, Hungría AB, Taylor SH, García T (2015) High-temperature stable gold nanoparticle catalysts for application under severe conditions: the role of TiO2 nanodomains in structure and activity. ACS Catal 5:1078–1086

    Google Scholar 

  15. Shang Z, Li S, Li L, Liu G, Liang X (2017) Highly active and stable alumina supported nickel nanoparticle catalysts for dry reforming of methane. Appl Catal B Environ 201:302–309

    CAS  Google Scholar 

  16. Arrigo R, Schuster ME, Xie Z, Yi Y, Wowsnick G, Sun LL, Hermann KE, Friedrich M, Kast P, Hävecker M (2015) Nature of the N–Pd interaction in nitrogen-doped carbon nanotube catalysts. ACS Catal 5:2740–2753

    CAS  Google Scholar 

  17. Onn TM, Zhang S, Arroyo-Ramirez L, Chung Y-C, Graham GW, Pan X, Gorte RJ (2015) Improved thermal stability and methane-oxidation activity of Pd/Al2O3 catalysts by atomic layer deposition of ZrO2. ACS Catal 5:5696–5701

    CAS  Google Scholar 

  18. Sarangi S, Satyam P, Nayak S, Mahanti S (2017) Molecular dynamics simulation studies of gold nano-cluster on silicon (001) surface. Indian J Phys 91:853–859

    CAS  Google Scholar 

  19. Fernández Navarro CJ, Mejía Rosales S (2013) Molecular dynamics of free and graphite-supported Pt-Pd nanoparticles. Adv Nanoparticles 2:323–328

    Google Scholar 

  20. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1:13–28

    Google Scholar 

  21. Ganz E, Ganz AB, Yang L-M, Dornfeld M (2017) The initial stages of melting of graphene between 4000 K and 6000 K. Phys Chem Chem Phys 19:3756–3762

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mittal G, Dhand V, Rhee KY, Park S-J, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25

    CAS  Google Scholar 

  23. Mabudi A, Noaparast M, Gharabaghi M, Vasquez V (2019) A molecular dynamics study on the wettability of graphene-based silicon dioxide (glass) surface. Colloids Surf A Physicochem Eng Asp 569:43–51

    CAS  Google Scholar 

  24. Filleter T, Bernal R, Li S, Espinosa HD (2011) Ultrahigh strength and stiffness in cross-linked hierarchical carbon nanotube bundles. Adv Mater 23:2855–2860

    CAS  PubMed  Google Scholar 

  25. Font F, Bresme F (2018) Transient melting at the nanoscale: a continuum heat transfer and nonequilibrium molecular dynamics approach. J Phys Chem C 122:17481–17489

    CAS  Google Scholar 

  26. Vo TQ, Kim BH (2017) Molecular dynamics study of thermodynamic properties of nanoclusters for additive manufacturing. Int J Precis Eng Manuf Green Technol 4:301–306

    Google Scholar 

  27. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164

    PubMed  Google Scholar 

  28. Pedireddy S, Lee HK, Tjiu WW, Phang IY, Tan HR, Chua SQ, Troadec C, Ling XY (2014) One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance. Nat Commun 5:4947

    CAS  PubMed  Google Scholar 

  29. Zhang S (2011) Molecular dynamics simulation of gold nanopariticles and surface stress effect. Lehigh University

  30. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    CAS  Google Scholar 

  31. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    CAS  PubMed  Google Scholar 

  32. Daw MS, Foiles SM, Baskes MI (1993) The embedded-atom method: a review of theory and applications. Mater Sci Rep 9:251–310

    CAS  Google Scholar 

  33. Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT (1988) Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins Struct Funct Bioinf 4:31–47

    CAS  Google Scholar 

  34. Yuan Q, Zhu X, Lin K, Zhao Y-P (2015) Molecular dynamics simulations of the enhanced recovery of confined methane with carbon dioxide. Phys Chem Chem Phys 17:31887–31893

    CAS  PubMed  Google Scholar 

  35. Lennard-Jones JE (1931) Cohesion. Proc Phys Soc 43:461

    CAS  Google Scholar 

  36. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695

    CAS  Google Scholar 

  37. Holman JP (1986) Heat transfer. McGraw-hill, New York

    Google Scholar 

  38. Rastogi A, Rajpoot P, Rastogi R, Verma UP (2019) Ab-initio study of electronic, optical, thermal, and transport properties of Cr4AlB6. Int J Quantum Chem 119:e25897

    Google Scholar 

  39. Jain A, McGaughey AJ (2016) Thermal transport by phonons and electrons in aluminum, silver, and gold from first principles. Phys Rev B 93:081206

    Google Scholar 

  40. Ahadi Z, Shadman Lakmehsari M, Kumar Singh S, Davoodi J (2017) Stability and thermal behavior of molybdenum disulfide nanotubes: nonequilibrium molecular dynamics simulation using REBO potential. J Appl Phys 122:224303

    Google Scholar 

  41. Mohebbi A (2012) Prediction of specific heat and thermal conductivity of nanofluids by a combined equilibrium and non-equilibrium molecular dynamics simulation. J Mol Liq 175:51–58

    CAS  Google Scholar 

  42. Chen G, Hui P (1999) Thermal conductivities of evaporated gold films on silicon and glass. Appl Phys Lett 74:2942–2944

    CAS  Google Scholar 

  43. Dunne TG (1987) Physical chemistry, (Levine, Ira N.). ACS Publications

  44. Pathria R, Beale PD (2011) Statistical mechanics. Elsevier, New York

    Google Scholar 

  45. Shrivastava A (2018) Introduction to plastics engineering. William Andrew

  46. Stauffer E, Dolan JA, Newman R (2007) Fire debris analysis. Academic Press

  47. Soma T, Kagaya HM, Nishigaki M (1983) Mean-square displacement and Lindeman's criterion for melting of alkali metals. Phys Status Solidi B 115:273–276

    CAS  Google Scholar 

  48. Fegley Jr B (2012) Practical chemical thermodynamics for geoscientists. Academic Press

  49. Atkins PW, De Paula J, Keeler J (2018) Atkins’ physical chemistry. Oxford University Press

  50. Hubbe MA, Koukoulas AA (2016) Wet-laid nonwovens manufacture–chemical approaches using synthetic and cellulosic fibers. BioResources 11:5500–5552

    Google Scholar 

  51. Mabudi A, Noaparast M, Gharabaghi M, Vasquez V (2019) Polystyrene nanoparticles as a flotation collector: a molecular dynamics study. J Mol Liq 275:554–566

    CAS  Google Scholar 

  52. Davoodi J, Safaralizade M, Yarifard M (2016) Molecular dynamics simulation of a gold nanodroplet in contact with graphene. Mater Lett 178:205–207

    CAS  Google Scholar 

Download references

Funding

MD simulations and post-simulation analysis were performed using computing clusters at the Tarbiat Modares University, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kharazian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1684 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowdini, E., Ahmad, A.A., Mabudi, A. et al. A molecular dynamics study on the thermal properties of carbon-based gold nanoparticles. J Mol Model 26, 307 (2020). https://doi.org/10.1007/s00894-020-04559-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04559-2

Keywords

Navigation