Skip to main content
Log in

Are all-atom any better than united-atom force fields for the description of liquid properties of alkanes?

Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Alkanes are a fundamental part in empirical force fields (FF) not only due to their technological relevance, but also due to the prevalence of alkane moieties in organic molecules, e.g., compounds containing a saturated carbon chain. Therefore, a good description of alkane interactions is crucial for determining the quality of a FF. In this study, the performance of 12 empirical force fields (FF) was evaluated in the context of reproducing liquid properties of alkanes. More specifically, n-octane was chosen as a reference compound since it is a liquid in a broad temperature range and it has numerous experimental data for thermodynamic, transport, and structural properties, as well as for their temperature dependencies. A normalized root-mean-square deviation (NRMSD) analysis was used to rank the force fields in their ability to reproduce the experimental data. Five out of the six best force fields considered were united-atom models. The GROMOS force field showed the smallest deviation in terms of NRMSD, followed by TRAPPE-EH, NERD, CHARMM-UA, TRAPPE-UA, and OPLS-UA. This overall better performance of the united-atom force fields indicates that complexity does not always bring quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Bonomi M, Bussi G, Camilloni C, Tribello GA, Banáš P, Barducci A, Capelli R (2019) Promoting transparency and reproducibility in enhanced molecular simulations. Nat Methods 16(8):670–673. https://doi.org/10.1038/s41592-019-0506-8

    Google Scholar 

  2. Abascal JLF, Vega C (2005) A general purpose model for the condensed phases of water: TIP4p/2005. J Chem Phys 123(23):234,505. https://doi.org/10.1063/1.2121687

    CAS  Google Scholar 

  3. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindah E (2015) Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Google Scholar 

  4. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindah E (2015) Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Google Scholar 

  5. Alejandre J, Chapela GA, Bresme F, Hansen JP (2009) The short range anion-h interaction is the driving force for crystal formation of ions in water. J Chem Phys 130(17):174,505. https://doi.org/10.1063/1.3124184

    Google Scholar 

  6. Allen M, Allen M, Tildesley D, ALLEN T, Tildesley D (1989) Computer simulation of liquids. Oxford Science Publ. Clarendon Press. https://books.google.com.br/books?id=O32VXB9e5P4C

  7. Ashbaugh HS, Liu L, Surampudi LN (2011) Optimization of linear and branched alkane interactions with water to simulate hydrophobic hydration. J Chem Phys 135(5):054,510. https://doi.org/10.1063/1.3623267

    Google Scholar 

  8. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J Phys Chem 97 (40):10,269–10,280. https://doi.org/10.1021/j100142a004

    CAS  Google Scholar 

  9. Bayly CI, Merz KM, Ferguson DM, Cornell WD, Fox T, Caldwell J, Kollman PA, Cieplak P, Gould IR, Spellmeyer DC (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117(19):5179–5197. https://doi.org/10.1021/ja00124a002

    Google Scholar 

  10. Berendsen H (1985) Treatment of long-range forces in molecular dynamics. In: Hermanss J (ed) Molecular dynamics and protein structure. Polycrystal Book Service, Western Springs , pp 18–22

  11. Berendsen HJ, van der Spoel D, van Drunen R (1995) GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1-3):43–56. https://doi.org/10.1016/0010-4655(95)00042-E

    CAS  Google Scholar 

  12. Berendsen HJC, Grigera JR, Straatsma T (1987) The missing term in effective pair potentials. J Phys Chem 91(24):6269–6271. https://doi.org/10.1021/j100308a038

    CAS  Google Scholar 

  13. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690. https://doi.org/10.1063/1.448118

    CAS  Google Scholar 

  14. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. The Jerusalem symposia on quantum chemistry and biochemistry, vol 14. Springer, Dordrecht, DOI https://doi.org/10.1007/978-94-015-7658-1_21

  15. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014,101. https://doi.org/10.1063/1.2408420

    Google Scholar 

  16. Chen B, Martin MG, Siepmann JI (1998) Thermodynamic properties of the Williams, OPLS-AA, and MMFF94 all-atom force fields for normal alkanes. J Phys Chem B 102(14):2578–2586. https://doi.org/10.1021/jp9801065

    CAS  Google Scholar 

  17. Chen B, Siepmann JI (1999) Transferable potentials for phase equilibria. 3. Explicit-hydrogen description of normal alkanes. J Phys Chem B 103(25):5370–5379. https://doi.org/10.1021/jp990822m

    CAS  Google Scholar 

  18. Chen B, Xing J, Siepmann JI (2000) Development of polarizable water force fields for phase equilibrium calculations. J Phys Chem B 104(10):2391–2401. https://doi.org/10.1021/jp993687m

    CAS  Google Scholar 

  19. Chynoweth S, Michopoulos Y (1994) An improved potential model for n-hexadecane molecular dynamics simulations under extreme conditions. Mol Phys 81(1):133–141. https://doi.org/10.1080/00268979400100091

    CAS  Google Scholar 

  20. Cieplak P, Caldwell J, Kollman P (2001) Molecular mechanical models for organic and biological systems going beyond the atom centered two body additive approximation: Aqueous solution free energies of methanol and N-methyl acetamide, nucleic acid base, and amide hydrogen bonding and chloroform/. J Comput Chem 22(10):1048–1057. https://doi.org/10.1002/jcc.1065

    CAS  Google Scholar 

  21. Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21 (12):1049–1074

    Google Scholar 

  22. Cornell WD, Cieplak P, Bayly CI, Kollman PA (1993) Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J AmChem Soc 115 (7):9620–9631

    CAS  Google Scholar 

  23. Darden T, York D, Pedersen L (1993) Particle mesh ewald: an nlog(n) method for ewald sums in large systems. J Chem Phys 98(12):10,089–10,092. https://doi.org/10.1063/1.464397

    CAS  Google Scholar 

  24. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh ewald method. J Chem Phys 103(19):8577–8593. https://doi.org/10.1063/1.470117

    CAS  Google Scholar 

  25. Ewen JP, Gattinoni C, Thakkar FM, Morgan N, Spikes HA, Dini D (2016) A comparison of classical force-fields for molecular dynamics simulations of lubricants. Materials 9(8):1–17. https://doi.org/10.3390/ma9080651

    Google Scholar 

  26. Foloppe N, MacKerell AD (2000) All-Atom Empirical Force Field for Nucleic Acids: I. Parameter Optimization Based on Small Molecule and Condensed Phase Macromolecular Target Data. J Comput Chem 21 (2):86–104. https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G

    CAS  Google Scholar 

  27. Gan Y, Cheng Q, Wang Z, Yang J, Sun W, Liu Y (2019) Molecular dynamics simulation of the nucleation and gelation process for a waxy crude oil multiphase system under different Physical-Chemical influencing factors. Energy and Fuels 33(8):7305–7320. https://doi.org/10.1021/acs.energyfuels.9b02019

    CAS  Google Scholar 

  28. Ghoufi A, Malfreyt P, Tildesley DJ (2016) Computer modelling of the surface tension of the gas-liquid and liquid-liquid interface. Chem Soc Rev 45(5):1387–1409. https://doi.org/10.1039/c5cs00736d

    CAS  PubMed  Google Scholar 

  29. Glasstone S, Laidler K, Eyring H (1941) The theory of rate processes: The kinetics of chemical reactions, viscosity, diffusion and electrochemical phenomena. International chemical series. McGraw-Hill Book Company, Incorporated

  30. Glova AD, Volgin IV, Nazarychev VM, Larin SV, Lyulin SV, Gurtovenko AA (2019) Toward realistic computer modeling of paraffin-based composite materials: Critical assessment of atomic-scale models of paraffins. RSC Advances 9(66):38,834–38,847. https://doi.org/10.1039/c9ra07325f

    CAS  Google Scholar 

  31. Hess B (2002) Determining the shear viscosity of model liquids from molecular dynamics simulations. J Chem Phys 116(1):209–217. https://doi.org/10.1063/1.1421362

    CAS  Google Scholar 

  32. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) Lincs: A linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

    CAS  Google Scholar 

  33. Horta BAC, Merz PT, Fuchs PFJ, Dolenc J, Riniker S, Hünenberger PH (2016) A gromos-compatible force field for small organic molecules in the condensed phase: The 2016h66 parameter set, vol 12. https://doi.org/10.1021/acs.jctc.6b00187.PMID:27248705

  34. Ismail AE, Tsige M, Veld PJ (2007) Surface tension of normal and branched alkanes. Mol Phys 105(23-24):3155–3163. https://doi.org/10.1080/00268970701779663

    CAS  Google Scholar 

  35. Jang YH, Blanco M, Creek J, Tang Y, Goddard WA (2007) Wax inhibition by comb-like polymers: Support of the incorporation- perturbation mechanism from molecular dynamics simulations. J Phys Chem B 111(46):13,173–13,179. https://doi.org/10.1021/jp072792q

    CAS  Google Scholar 

  36. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein M (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935. https://doi.org/10.1063/1.445869

    CAS  Google Scholar 

  37. Jorgensen WL, Madura JD, Swenson CJ (1984) Optimized intermolecular potential functions for liquid hydrocarbons. J Am Chem Soc 106(22):6638–6646. https://doi.org/10.1021/ja00334a030

    CAS  Google Scholar 

  38. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11,225–11,236. https://doi.org/10.1021/ja9621760

    CAS  Google Scholar 

  39. Kaminski G, Duffy EM, Matsui T, Jorgensen WL (1994) Free energies of hydration and pure liquid properties of hydrocarbons from the OPLS all-atom model. J Phys Chem 98(49):13,077–13,802. https://doi.org/10.1021/j100100a043

    CAS  Google Scholar 

  40. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, Mackerell AD Jr., Pastor RW, Connor JWO (2011) Update of the CHARMM all-atom additive force field for lipids. J Phys Chem B 114(23):7830–7843. https://doi.org/10.1021/jp101759q.Update

    Google Scholar 

  41. Klauda JB, Venable RM, MacKerell AD, Pastor RW (2008) Chapter 1 considerations for lipid force field development. Curr Top Membr 60(08):1–48. https://doi.org/10.1016/S1063-5823(08)00001-X

    CAS  Google Scholar 

  42. Korochkova EA, Boltachev GS, Baidakov VG (2006) Effect of long-range interactions on the surface tension. Russ J Phys Chem 80(3):445–448. https://doi.org/10.1134/s003602440603023x

    CAS  Google Scholar 

  43. Lechner MD (ed) (1997) Surface tension of pure liquids and binary liquid mixtures. Springer-Verlag, Berlin. https://doi.org/10.1007/b60566

    Google Scholar 

  44. Lee S, Tran A, Allsopp M, Lim JB, Hénin J, Klauda JB (2014) CHARMM36 United atom chain model for lipids and surfactants. J Phys Chem B 118(2):547–556. https://doi.org/10.1021/jp410344g

    CAS  PubMed  Google Scholar 

  45. Lundberg L, Edholm O (2016) Dispersion corrections to the surface tension at planar surfaces. J Chem Theory Comput 12(8):4025–4032. https://doi.org/10.1021/acs.jctc.6b00182

    CAS  PubMed  Google Scholar 

  46. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616. https://doi.org/10.1021/jp973084f

    CAS  PubMed  Google Scholar 

  47. Majer V (1985) Enthalpies of vaporization of organic compounds: a critical review and data compilation. Blackwell Scientific, Oxford

    Google Scholar 

  48. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, De Vries AH (2007) The MARTINI force field: Coarse grained model for biomolecular simulations. J Phys Chem B 111(27):7812–7824. https://doi.org/10.1021/jp071097f

    CAS  PubMed  Google Scholar 

  49. Marsh K, Wilhoit R (1996) Thermodynamic properties of organic compounds and their mixtures: Densities of aliphatic hydrocarbons: alkanes. numerical data and functional relationships in science and technology - macroscopic properties of matter, vol 8B. Springer, Berlin

    Google Scholar 

  50. Martin MG, Siepmann JI (1998) Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J Phys Chem B 102(14):2569–2577. https://doi.org/10.1021/jp972543+

    CAS  Google Scholar 

  51. Narten AH, Habenschuss A, Honnell KG, McCoy JD, Curro JG, Schweizer KS (1992) Diffraction by macromolecular fluids. J Chem Soc Faraday Trans 88:1791–1795. https://doi.org/10.1039/FT9928801791

    CAS  Google Scholar 

  52. Nath SK, Banaszak BJ, De Pablo JJ (2001) New united atom force field for α-olefins. J Chem Phys 114(8):3612–3616. https://doi.org/10.1063/1.1343487

    CAS  Google Scholar 

  53. Nath SK, De Pablo JJ (2000) Simulation of vapour-liquid equilibria for branched alkanes. Mol Phys 98(4):231–238. https://doi.org/10.1080/00268970009483286

    CAS  Google Scholar 

  54. Nath SK, Escobedo FA, De Pablo JJ (1998) On the simulation of vapor-liquid equilibria for alkanes. J Chem Phys 108(23):9905–9911. https://doi.org/10.1063/1.476429

    CAS  Google Scholar 

  55. Neria E, Fischer S, Karplus M (1996) Simulation of activation free energies in molecular systems. J Chem Phys 105(5):1902–1921. https://doi.org/10.1063/1.472061

    CAS  Google Scholar 

  56. Nikitin AM, Milchevskiy YV, Lyubartsev AP (2014) A new AMBER-compatible force field parameter set for alkanes. J Mol Model 20:2143. https://doi.org/10.1007/s00894-014-2143-6

    PubMed  Google Scholar 

  57. Nosé S., Klein M (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50(5):1055–1076. https://doi.org/10.1080/00268978300102851

    Google Scholar 

  58. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: The gromos force-field parameter sets 53a5 and 53a6. J Comput Chem 25(13):1656–1676. https://doi.org/10.1002/jcc.20090

    CAS  PubMed  Google Scholar 

  59. Papavasileiou KD, Peristeras LD, Bick A, Economou IG (2019) Molecular dynamics simulation of pure n-Alkanes and their mixtures at elevated temperatures using atomistic and coarse-grained force fields. J Phys Chem B 123(29):6229–6243. https://doi.org/10.1021/acs.jpcb.9b02840

    CAS  PubMed  Google Scholar 

  60. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190. https://doi.org/10.1063/1.328693

    CAS  Google Scholar 

  61. Paul W, Yoon DY, Smith GD (1995) An optimized united atom model for simulations of polymethylene melts. J Chem Phys 103(4):1702–1709. https://doi.org/10.1063/1.469740

    CAS  Google Scholar 

  62. Pisarev VV, Zakharov SA (2018) Comparison of forcefields for molecular dynamics simulations of hydrocarbon phase diagrams. J Phys Conf Ser 946(012):100. https://doi.org/10.1088/1742-6596/946/1/012100

    Google Scholar 

  63. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, Van Der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29 (7):845–854. https://doi.org/10.1093/bioinformatics/btt055

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Reif MM, Hünenberger PH, Oostenbrink C (2012) New interaction parameters for charged amino acid side chains in the gromos force field. J Chem Theory Comput 8(10):3705–3723. https://doi.org/10.1021/ct300156h.PMID:26593015

    CAS  PubMed  Google Scholar 

  65. dos Santos TJ, Abreu CR, Horta BA, Tavares FW (2020) Self-diffusion coefficients of methane/n-hexane mixtures at high pressures: An evaluation of the finite-size effect and a comparison of force fields. J Supercrit Fluids 155:104,639. https://doi.org/10.1016/j.supflu.2019.104639

    CAS  Google Scholar 

  66. Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF (2011) Definition and testing of the GROMOS force-field versions 54a7 and 54b7. Eur Biophys J 40 (7):843–856. https://doi.org/10.1007/s00249-011-0700-9

    CAS  PubMed  Google Scholar 

  67. Schuler LD, Daura X, Gunsteren WFV (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem 22(11):1205–1218

    CAS  Google Scholar 

  68. Schuler LD, Van Gunsteren WF (2000) On the choice of dihedral angle potential energy functions for n-alkanes. Mol Simul 25(5):301–319. https://doi.org/10.1080/08927020008024504

    CAS  Google Scholar 

  69. Siu SWI, Pluhackova K, Böckmann RA (2012) Optimization of the OPLS-AA force field for long hydrocarbons. J Chem Theory Comput 8(4):1459–70. http://www.ncbi.nlm.nih.gov/pubmed/26596756

    CAS  PubMed  Google Scholar 

  70. Smith GD, Paul W, Yoon DY, Zirkel A, Hendricks J, Richter D, Schober H (1997) Local dynamics in a long-chain alkane melt from molecular dynamics simulations and neutron scattering experiments. J Chem Phys 107(12):4751–4755. https://doi.org/10.1063/1.474837

    CAS  Google Scholar 

  71. Smith GD, Yoon DY (1994) Equilibrium and dynamic properties of polymethylene melts from molecular dynamics simulations. i. n-tridecane. J Chem Phys 100(1):649–658. https://doi.org/10.1063/1.466929

    CAS  Google Scholar 

  72. Snyder RG, Kim Y (1991) Conformation and low-frequency isotropic raman spectra of the liquid n-alkanes c4-c9. J Phys Chem 95(2):602–610. https://doi.org/10.1021/j100155a022

    CAS  Google Scholar 

  73. Sun Y, Kollman PA (1995) Hydrophobic solvation of methane and nonbond parameters of the tip3p water model. J Comput Chem 16(9):1164–1169. https://doi.org/10.1002/jcc.540160910

    CAS  Google Scholar 

  74. Tang J, Qu Z, Luo J, He L, Wang P, Zhang P, Tang X, Pei Y, Ding B, Peng B, Huang Y (2018) Molecular dynamics simulations of the oil-detachment from the hydroxylated silica surface: Effects of surfactants, electrostatic interactions, and water flows on the water molecular channel formation. J Phys Chem B 122:1905–1928. https://doi.org/10.1021/acs.jpcb.7b09716

    CAS  PubMed  Google Scholar 

  75. Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G (2014) PLUMED 2: new feathers for an old bird. Comput Phys Commun 185(2):604–613. https://doi.org/10.1016/j.cpc.2013.09.018

    CAS  Google Scholar 

  76. Tuckerman M, Berne BJ, Martyna GJ (1992) Reversible multiple time scale molecular dynamics. J Chem Phys 97(3):1990–2001. https://doi.org/10.1063/1.463137

    CAS  Google Scholar 

  77. Valiev M, Bylaska E, Govind N, Kowalski K, Straatsma T, Dam HV, Wang D, Nieplocha J, Apra E, Windus T, de Jong W (2010) NWCHem: A comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181(9):1477–1489. https://doi.org/10.1016/j.cpc.2010.04.018

    CAS  Google Scholar 

  78. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: Fast, flexible, and free. J Comput Chem 26(16):1701–1718. https://doi.org/10.1002/jcc.20291

    PubMed  Google Scholar 

  79. van Velzen D, R. LC, Langekamp H (1972) Liquid viscosity a Nd chemica L constitution. Tech. rep. Joint Nuclear Research Centre, Ispra Establishment

  80. Von Meerwall E, Beckman S, Jang J, Mattice WL (1998) Diffusion of liquid n-alkanes: Free-volume and density effects. J Chem Phys 108(10):4299–4304. https://doi.org/10.1063/1.475829

    CAS  Google Scholar 

  81. Waheed N, Lavine MS, Rutledge GC (2002) Molecular simulation of crystal growth in n-eicosane. J Chem Phys 116(5):2301–2309. https://doi.org/10.1063/1.1430744

    CAS  Google Scholar 

  82. Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?. J Comput Chem 21(12):1049–1074. https://doi.org/10.1002/1096-987x(200009)21:12<1049::aid-jcc3>3.3.co;2-6

    CAS  Google Scholar 

  83. Yan H, Yuan S (2016) Molecular dynamics simulation of the oil detachment process within silica nanopores. J Phys Chem C 120:2667–2674. https://doi.org/10.1021/acs.jpcc.5b09841

    CAS  Google Scholar 

  84. Yin D, Mackerell AD (1998) Combined ab initio / empirical approach for optimization of Lennard-Jones parameters. J Comput Chem 19 (3):334–348. https://doi.org/10.1002/(SICI)1096-987X(199802)19:3<334::AID-JCC7>3.0.CO;2-U

    CAS  Google Scholar 

  85. Zeng Y, Khodadadi JM (2018) Molecular dynamics simulations of the crystallization process of n -Alkane mixtures and the resulting thermal conductivity. Energy Fuels 32(11):11,253–11,260. https://doi.org/10.1021/acs.energyfuels.8b02500

    CAS  Google Scholar 

Download references

Funding

GCQS was provided a fellowship by CNPq. The authors also received support from the Brazilian funding agencies CAPES (code 001) and FAPERJ as well as the support of Núcleo Avançado de Computação de Alto Desempenho (NACAD/COPPE/UFRJ) and Sistema Nacional de Processamento de Alto Desempenho (SINAPAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno A. C. Horta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection XX - Brazilian Symposium of Theoretical Chemistry (SBQT2019)

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.28 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, G.C.Q., Silva, G.M., Tavares, F.W. et al. Are all-atom any better than united-atom force fields for the description of liquid properties of alkanes?. J Mol Model 26, 296 (2020). https://doi.org/10.1007/s00894-020-04548-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04548-5

Keywords

Navigation