Skip to main content
Log in

Spherical harmonics representation of the potential energy surface for the H2⋯H2 van der Waals complex

Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We perform a study of the molecular anisotropy for the H2⋯H2 van der Waals system using a spherical harmonics expansion. We use six leading stable configurations to construct our analytical potential energy surface (PES) from ab initio calculations guided qualitatively by the symmetry-adapted perturbation theory (SAPT) analyses. We extrapolate the energies of the PES performed at the CCSD(T)/aug-cc-pVnZ (n = 2 and 3) levels to the complete basis set (CBS) limit. To best fit the shallow potential energy surface of each leading configuration with the intermolecular distance, it was employed an extended version of the Rydberg potential. To assess the quality of our extrapolated analytical PES, we calculate the second virial coefficients, which are in relatively good agreement with the experimental data. As a result, the spherical harmonics coefficients obtained might be of considerable relevance in spectroscopy and dynamics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Takayanagi K (1965) . Adv At Mol Phys 1:149

    Article  Google Scholar 

  2. Burton PG, Senff UE (1982) . J Chem Phys 76:6073

    Article  CAS  Google Scholar 

  3. Schaefer J, Köhler WE (1989) . Z Phys D: Mol Clusters 13:217

    Article  CAS  Google Scholar 

  4. Hinde RJ (2008) . J Chem Phys 128:154308

    Article  CAS  Google Scholar 

  5. Donchev AG, Galkin NG, Tarasov VI (2007) . J Chem Phys 126:174307

    Article  CAS  Google Scholar 

  6. Van TP, Deiters UK (2015) . Chem Phys 457:171–179

    Article  CAS  Google Scholar 

  7. Patkowski K, Cencek W, Jankowski P, Szalewicz K, Mehl JB, Garberoglio G, Harvey AH (2008) . J Chem Phys 129:094304

    Article  CAS  Google Scholar 

  8. Diep P, Johnson JK (2000) . J Chem Phys 112:4465

    Article  CAS  Google Scholar 

  9. Cappelletti D, Pirani F, Bussery-Honvault B, Gomez L, Bartolomei M (2008) . Phys Chem Chem Phys 10:4281–4293

    Article  CAS  Google Scholar 

  10. Palazzeti F, Munusamy E, Lombardi A, Grossi G, Aquilanti V (2011) . Int J Quant Chem 111:318

    Article  CAS  Google Scholar 

  11. Albernaz AF, Aquilanti V, Barreto PRP, Caglioti C, Cruz ACPS, Grossi G, Lombardi A, Palazzetti F (2016) . J Phys Chem A 120:5315–5324

    Article  CAS  Google Scholar 

  12. Barreto PRP, Vilela AFA, Lombardi A, Maciel GS, Palazzetti F, Aquilanti V (2007) . J Phys Chem A 111:12754–12762

    Article  CAS  Google Scholar 

  13. Maciell GS, Barreto PRP, Palazzettil F, Lombardi A, Aquilanti V (2008) . J Chem Phys 129:164302

    Article  CAS  Google Scholar 

  14. Barreto PRP, Albernaz AF, Palazzetti F, Lombardi A, Grossi G, Aquilanti V (2011) . Phys Scrip 84:022111

    Article  CAS  Google Scholar 

  15. Barreto PRB, Albernaz AF, Capobianco A, Palazzetti F, Lombardi A, Grossi G, Aquilanti V (2012) . Comp Theor Chem 990:53

    Article  CAS  Google Scholar 

  16. Barreto PRB, Albernaz AF, Capobianco A, Palazzetti F, Lombardi A, Grossi G, Aquilanti V (2012) . Comp Theor Chem 990:53

    Article  CAS  Google Scholar 

  17. Barreto PRP, Ribas VW, Palazzetti F (2009) . J Phys Chem A 113:15047–15054

    Article  CAS  Google Scholar 

  18. Lombardi A, Palazzetti F, Peroncelli L, et al. (2007) . Theor Chem Account 117:709–721

    Article  CAS  Google Scholar 

  19. Barreto PRP, Albernaz AF, Palazzetti F (2012) . Int J Quant Chem 112:834–847

    Article  CAS  Google Scholar 

  20. Barreto PRP, Cruz ACPS, Barreto RLP, Palazzetti F, Albernaz AF, Lombardi A, Maciel GS, Aquilanti V (2017) . J Mol Spectrosc 337:163

    Article  CAS  Google Scholar 

  21. Aquilanti V, Capecchi G, Cavalli S (2000) . Adv Quantum Chem 36:341

    Article  Google Scholar 

  22. Helgaker HKT, Klopper W, Noga J (1997) . J Chem Phys 106:9639

    Article  CAS  Google Scholar 

  23. Aquilanti V, Cavalli S (1986) . J Chem Phys 85:1355–1361

    Article  CAS  Google Scholar 

  24. Aquilanti V, Cavalli S, Grossi G (1986) . J Chem Phys 85:1362–1375

    Article  CAS  Google Scholar 

  25. Boys SF, Bernardi F (2002) . Mol Phys 100:65–73

    Article  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB., Scuseria GE., Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Jr JAM, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas JB, Foresman JV, Ortiz J, Cioslowski DJ (2009) Fox, Gaussian 09, Revision D.01, http://www.gaussian.com/

  27. NIST Diatomic Spectral Database (2005) www.physics.nist.gov/PhysRefData/MolSpec/Diatomic/index.html

  28. Jeziorski B, Moszynski R, Szalewicz K (1994) . Chem Rev 94:1887–1930

    Article  CAS  Google Scholar 

  29. Szalewicz K, Jeziorski B (1997). In: Sheiner S (ed) Molecular interactions: from van der Waals to strongly bound complexes. Wiley, New York, p 3

  30. Jeziorski B, Szalewicz K (1998). In: Von ragué Schleyer P, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner RP (eds) Encyclopedia of computational chemistry, vol 2. Chichester, Wiley, pp 1376–1398

  31. Jeziorski B, Szalewicz K (2003). In: Wilson S (ed) Handbook of molecular physics and quantum chemistry chapter 9, vol 3, part 2. Wiley, New York, pp 232–279

  32. Szalewicz K, Patkowski K, Jeziorski B (2005). In: Wales DJ (ed) Intermolecular forces and clusters of structure and bonding, vol 116. Springer, New York, pp 43–117

  33. Parrish RM, Burns LA, Smith DGA, Simmonett AC, III AED, Hohenstein EG, Bozkaya U, Sokolov AY, Remigio RD, Richard RM, Gonthier JF, James AM, McAlexander HR, Kumar A, Saitow M, Wang X, Pritchard BP, Verma P, III HFS, Patkowski K, King EFVRA, Evangelista FA, Turney JM, Crawford TD, Sherrill CD (2017) . J Chem Theory Comput 13:3185–3197

  34. Pack RT (1983) . J Chem Phys 78:7217

    Article  CAS  Google Scholar 

  35. Dymond JH, Smith EB (2002). In: Frenkel M, Marsh K (eds) The virial coefficients of pure gases. Springer, Berlin

Download references

Funding

This work was supported by a MCTI-PCI grant, Institutional Process Number 444327/2018-5, Individual Process Number 313555/2019-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra F. Albernaz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection XX-Brazilian Symposium of Theoretical Chemistry (SBQT2019)

Appendices

Appendix 1: Hyperspherical harmonics expansion of the interaction potential

Applying the expansion of Eq. (4) to the LC’s of Fig. 2 one gets

$$ \begin{array}{@{}rcl@{}} \varepsilon^{H}&=&\varepsilon^{000}-\sqrt{5}\varepsilon^{202}+\sqrt{5}\varepsilon^{220}+\frac{5}{\sqrt{14}}\varepsilon^{222}+\frac{9}{4}\sqrt{\frac{5}{14}}\varepsilon^{224}+\frac{9}{4}\varepsilon^{404} \\ \varepsilon^{X}&=&\varepsilon^{000}-\sqrt{5}\varepsilon^{202}-\frac{\sqrt{5}}{2}\varepsilon^{220}-\frac{10}{\sqrt{14}}\varepsilon^{222}+\frac{3}{4}\sqrt{\frac{5}{14}}\varepsilon^{224}+\frac{9}{4}\varepsilon^{404} \\ \varepsilon^{T}&=&\varepsilon^{000}+\frac{\sqrt{5}}{2}\varepsilon^{202}-\frac{\sqrt{5}}{2}\varepsilon^{220}+\frac{5}{\sqrt{14}}\varepsilon^{222}-3\sqrt{\frac{5}{14}}\varepsilon^{224}+\frac{33}{8}\varepsilon^{404} \\ \varepsilon^{L}&=&\varepsilon^{000}+2\sqrt{5}\varepsilon^{202}+\sqrt{5}\varepsilon^{220}-\frac{10}{\sqrt{14}}\varepsilon^{222}+6\sqrt{\frac{5}{14}}\varepsilon^{224}+6\varepsilon^{404} \\ \varepsilon^{Z}&=&\varepsilon^{000}+\frac{\sqrt{5}}{2}\varepsilon^{202}+\sqrt{5}\varepsilon^{220}-\frac{5}{2\sqrt{14}}\varepsilon^{222}-\frac{39}{16}\sqrt{\frac{5}{14}}\varepsilon^{224}-\frac{39}{16}\varepsilon^{404} \\ \varepsilon^{S}&=&\varepsilon^{000}-\frac{\sqrt{5}}{4}\varepsilon^{202}-\frac{13\sqrt{5}}{32}\varepsilon^{220}-\frac{35}{8\sqrt{14}}\varepsilon^{222}-\frac{21}{64}\sqrt{\frac{5}{14}}\varepsilon^{224}-\frac{111}{64}\varepsilon^{404} \\ \end{array} $$
(A1.1)

The respective moments for the analytical PES is obtained by the inversion of these relations given by

$$ \begin{array}{@{}rcl@{}} \varepsilon^{000}&=&\frac{1}{45}\left( 10\varepsilon^{H}-8\varepsilon^{X}+8\varepsilon^{T}+3\varepsilon^{L}+32\varepsilon^{S}\right) \\ \varepsilon^{202}&=&-\frac{1}{63\sqrt{5}}\left( 14\varepsilon^{H}+23\varepsilon^{X}-8\varepsilon^{T}-13\varepsilon^{L}-16\varepsilon^{S}\right) \\ \varepsilon^{220}&=&\frac{8}{45\sqrt{5}}\left( \varepsilon^{H}+\varepsilon^{X}-\varepsilon^{T}+3\varepsilon^{Z}-4\varepsilon^{S}\right) \\ \varepsilon^{222}&=&\frac{1}{45}\sqrt{\frac{2}{7}}\left( 13\varepsilon^{H}-23\varepsilon^{X}+8\varepsilon^{T}-2\varepsilon^{L}-12\varepsilon^{Z}+16\varepsilon^{S}\right) \\ \varepsilon^{224}&=&\frac{4}{45}\sqrt{\frac{2}{35}}\left( 6\varepsilon^{H}-9\varepsilon^{X}-6\varepsilon^{T}+5\varepsilon^{L}-12\varepsilon^{Z}+16\varepsilon^{S}\right) \\ \varepsilon^{404}&=&\frac{4}{315}\left( 9\varepsilon^{X}+6\varepsilon^{T}+\varepsilon^{L}-16\varepsilon^{S}\right) \end{array} $$
(A1.2)

Appendix 2: Second virial expansion

$$ B_{2}(T) = \left[ B_{cl}(T)+{B_{I}^{r}}(T)+B_{I}^{a,I}(T)+B_{I}^{a,\mu}(T)+B_{II}^{r}(T)+\cdots\right] $$
(A2.1)

with

$$ \begin{array}{@{}rcl@{}} B_{cl}(T) &=& \frac{-N_{A}}{4}{\int}^{2\pi}_{0}{\int}^{\pi}_{0}\sin{\theta_{1}}{\int}^{\pi}_{0}\sin{\theta_{2}}\times \\ &&{\int}^{\infty}_{0}\left( 1-\exp \left( -\frac{V}{k_{B} T}\right)\right)r^{2}drd\theta_{1}d\theta_{2}d\phi \end{array} $$
(A2.2)
$$ \begin{array}{@{}rcl@{}} {B_{I}^{r}}(T) = \frac{N_{A}\hbar^{2}}{48\mu {k^{3}_{B}}T^{3}}&&{\int}^{2\pi}_{0}{\int}^{\pi}_{0}\sin{\theta_{1}}{\int}^{\pi}_{0}\sin{\theta_{2}}\times \\ &&{\int}^{\infty}_{0}\exp\left( -\frac{V}{k_{B} T}\right)\left( \frac{\partial V}{\partial r}\right)^{2}r^{2}drd\theta_{1}d\theta_{2}d\phi \end{array} $$
(A2.3)
$$ \begin{array}{@{}rcl@{}} &&B_{I}^{a,I}(T)= \frac{-N_{A}}{48{k^{3}_{B}}T^{3}}{\int}^{2\pi}_{0}{\int}^{\pi}_{0}\sin{\theta_{1}}{\int}^{\pi}_{0}\sin{\theta_{2}}{\int}^{\infty}_{0}\exp\left( -\frac{V}{k_{B} T}\right)\times \\ &&\left[\sum\limits_{i=1}^{2}\frac{\hbar^{2}}{2I_{i}}\left( \cot{\theta_{i}}\frac{\partial V}{\partial\theta_{i}}+\frac{\partial^{2} V}{{\partial\theta_{i}^{2}}}+\frac{1}{\sin^{2}{\theta_{i}}}\frac{\partial^{2} V}{\partial\phi^{2}}\right)\right]r^{2}drd\theta_{1}d\theta_{2}d\phi \\ \end{array} $$
(A2.4)
$$ \begin{array}{@{}rcl@{}} &&B_{I}^{a,\mu}(T)= \frac{-N_{A}}{48{k^{3}_{B}}T^{3}}{\int}^{2\pi}_{0}{\int}^{\pi}_{0}\sin{\theta_{1}}{\int}^{\pi}_{0}\sin{\theta_{2}}{\int}^{\infty}_{0}\exp\left( -\frac{V}{k_{B} T}\right)\times \\ &&\left[\sum\limits_{i=1}^{2}\frac{\hbar^{2}}{2\mu r^{2}}\left( \cot{\theta_{i}}\frac{\partial V}{\partial\theta_{i}}+\frac{\partial^{2} V}{{\partial\theta_{i}^{2}}}+\frac{1}{\sin^{2}{\theta_{i}}}\frac{\partial^{2} V}{\partial\phi^{2}}\right)\right]r^{2}drd\theta_{1}d\theta_{2}d\phi \\ \end{array} $$
(A2.5)
$$ \begin{array}{@{}rcl@{}} B_{II}^{r}(T) &=& \frac{-N_{A}\hbar^{4}}{1920\mu^{2}{k^{4}_{B}}T^{4}}{\int}^{2\pi}_{0}{\int}^{\pi}_{0}\sin{\theta_{1}}{\int}^{\pi}_{0}\sin{\theta_{2}}{\int}^{\infty}_{0}\exp\left( -\frac{V}{k_{B} T}\right)\times \\ &&\left[\left( \frac{\partial^{2} V}{\partial r^{2}}\right)^{2}+\frac{2}{r^{2}}\left( \frac{\partial V}{\partial r}\right)^{2}+\frac{10}{9k_{B} T}\frac{1}{r}\left( \frac{\partial V}{\partial r}\right)^{3}\right. \\ &-&\left.\frac{5}{36{k^{2}_{B}} T^{2}}\left( \frac{\partial V}{\partial r}\right)^{4}\right]r^{2}drd\theta_{1}d\theta_{2}d\phi \\ \end{array} $$
(A2.6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreto, P.R.P., Cruz, A.C.P.S., Euclides, H.O. et al. Spherical harmonics representation of the potential energy surface for the H2⋯H2 van der Waals complex. J Mol Model 26, 277 (2020). https://doi.org/10.1007/s00894-020-04537-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04537-8

Keywords

Navigation