Skip to main content

In silico studies on the interaction of phage displayed biorecognition element (TFQAFDLSPFPS) with the structural protein VP28 of white spot syndrome virus

Abstract

White spot disease caused by the white spot syndrome virus (WSSV) incurs a huge loss to the shrimp farming industry. Since no effective therapeutic measures are available, early detection and prevention of the disease are indispensable. Towards this goal, we previously identified a 12-mer phage displayed peptide (designated as pep28) with high affinity for VP28, the structural protein of the white spot syndrome virus (WSSV). The peptide pep28 was successfully used as a biorecognition probe in the lateral flow assay developed for rapid, on-site detection of WSSV. To unravel the structural determinants for the selective binding between VP28 and pep28, we used bioinformatics, structural modeling, protein-protein docking, and binding-free energy studies. We performed atomistic molecular dynamics simulations of pep28-pIII model totaling 300 ns timescale. The most representative pep28-pIII structure from the simulation was used for docking with the crystal structure of VP28. Our results reveal that pep28 binds in a surface groove of the monomeric VP28 β-barrel and makes several hydrogen bonds and non-polar interactions. Ensemble-based binding-free energy studies reveal that the binding is dominated by non-polar interactions. Our studies provide molecular level insights into the binding mechanism of pep28 with VP28, which explain why the peptide is selective and can assist in modifying pep28 for its practical use, both as a biorecognition probe and a therapeutic.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

WSSV:

White spot syndrome virus

WSD:

White spot disease

OPLS:

Optimized potentials for liquid simulations

GROMACS:

GROningen MAchine for Chemical Simulations

VMD:

Visual molecular dynamics

MM-PBSA:

Molecular mechanics Poisson–Boltzmann surface area

RMSD:

Root mean square deviation

RMSF:

Root mean square fluctuation

References

  1. Chou H, Huang C, Lo C, Kou G (1998) Studies on transmission of white spot syndrome associated baculovirus (WSBV) in Penaeus monodon and P. japonicus via waterborne contact and oral ingestion. Aquaculture 164:263–276. https://doi.org/10.1016/S0044-8486(98)00192-6

    Article  Google Scholar 

  2. Chang P, Lo C, Wang Y, Kou G (1996) Identification of white spot syndrome associated baculovirus (WSBV) target organs in the shrimp Penaeus monodon by in situ hybridization. Dis Aquat Org 27:131–139. https://doi.org/10.3354/dao027131

    Article  Google Scholar 

  3. Verbruggen B, Bickley L, van Aerle R et al (2016) Molecular mechanisms of white spot syndrome virus infection and perspectives on treatments. Viruses 8:23. https://doi.org/10.3390/v8010023

    Article  PubMed Central  CAS  Google Scholar 

  4. Shinn AP, Pratoomyot J, Griffiths D et al (2018) Asian shrimp production and the economic costs of disease. Asian Fish Sci 31:29–58

    Google Scholar 

  5. Mayo MA (2002) A summary of taxonomic changes recently approved by ICTV. Arch Virol 147:1655–1656. https://doi.org/10.1007/s007050200039

    Article  PubMed  CAS  Google Scholar 

  6. Tsai J-M, Wang H-C, Leu J-H et al (2006) Identification of the nucleocapsid, tegument, and envelope proteins of the shrimp white spot syndrome virus virion. J Virol 80:3021–3029. https://doi.org/10.1128/JVI.80.6.3021-3029.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Xie X, Xu L, Yang F (2006) Proteomic analysis of the major envelope and nucleocapsid proteins of white spot syndrome virus. J Virol 80:10615–10623. https://doi.org/10.1128/JVI.01452-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Tsai J-M, Wang H-C, Leu J-H et al (2004) Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. J Virol 78:11360–11370. https://doi.org/10.1128/JVI.78.20.11360-11370.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Tang X, Wu J, Sivaraman J, Hew CL (2007) Crystal structures of major envelope proteins VP26 and VP28 from white spot syndrome virus shed light on their evolutionary relationship. J Virol 81:6709–6717. https://doi.org/10.1128/JVI.02505-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Chang Y-S, Liu W-J, Lee C-C et al (2010) A 3D model of the membrane protein complex formed by the white spot syndrome virus structural proteins. PLoS One 5:e10718. https://doi.org/10.1371/journal.pone.0010718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Yi G, Wang Z, Qi Y et al (2004) Vp28 of shrimp white spot syndrome virus is involved in the attachment and penetration into shrimp cells. J Biochem Mol Biol 37:726–734

    PubMed  CAS  Google Scholar 

  12. Verma AK, Gupta S, Verma S et al (2013) Interaction between shrimp and white spot syndrome virus through PmRab7-VP28 complex: an insight using simulation and docking studies. J Mol Model 19:1285–1294. https://doi.org/10.1007/s00894-012-1672-0

    Article  PubMed  CAS  Google Scholar 

  13. Lan J-F, Li X-C, Sun J-J et al (2013) Prohibitin interacts with envelope proteins of white spot syndrome virus and prevents infection in the red swamp crayfish, Procambarus clarkii. J Virol 87:12756–12765. https://doi.org/10.1128/JVI.02198-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Watthanasurorot A, Guo E, Tharntada S et al (2014) Hijacking of host calreticulin is required for the white spot syndrome virus replication cycle. J Virol 88:JVI.01014-14. https://doi.org/10.1128/JVI.01014-14

    Article  CAS  Google Scholar 

  15. Xu H, Yan F, Deng X et al (2009) The interaction of white spot syndrome virus envelope protein VP28 with shrimp Hsc70 is specific and ATP-dependent. Fish Shellfish Immunol 26:414–421. https://doi.org/10.1016/j.fsi.2009.01.001

    Article  PubMed  CAS  Google Scholar 

  16. Kulabhusan PK, Rajwade JM, Sahul Hameed AS, Paknikar KM (2017) Lateral flow assay for rapid detection of white spot syndrome virus (WSSV) using a phage-displayed peptide as bio-recognition probe. Appl Microbiol Biotechnol 101:4459–4469. https://doi.org/10.1007/s00253-017-8232-6

    Article  PubMed  CAS  Google Scholar 

  17. Liu W, Wang Y, Tian D et al (2002) Detection of white spot syndrome virus (WSSV) of shrimp by means of monoclonal antibodies (MAbs) specific to an envelope protein (28 kDa). Dis Aquat Org 49:11–18. https://doi.org/10.3354/dao049011

    Article  PubMed  CAS  Google Scholar 

  18. Powell JWB, Burge EJ, Browdy CL, Shepard EF (2006) Efficiency and sensitivity determination of Shrimple®, an immunochromatographic assay for white spot syndrome virus (WSSV), using quantitative real-time PCR. Aquaculture 257:167–172. https://doi.org/10.1016/j.aquaculture.2006.03.010

    Article  CAS  Google Scholar 

  19. Sithigorngul P, Rukpratanporn S, Chaivisuthangkura P et al (2011) Simultaneous and rapid detection of white spot syndrome virus and yellow head virus infection in shrimp with a dual immunochromatographic strip test. J Virol Methods 173:85–91. https://doi.org/10.1016/j.jviromet.2011.01.011

    Article  PubMed  CAS  Google Scholar 

  20. Yoganandhan K, Syed Musthaq S, Narayanan RB, Sahul Hameed AS (2004) Production of polyclonal antiserum against recombinant VP28 protein and its application for the detection of white spot syndrome virus in crustaceans. J Fish Dis 27:517–522. https://doi.org/10.1111/j.1365-2761.2004.00564.x

    Article  PubMed  CAS  Google Scholar 

  21. Yi G, Qian J, Wang Z, Qi Y (2003) A phage-displayed peptide can inhibit infection by white spot syndrome virus of shrimp. J Gen Virol 84:2545–2553. https://doi.org/10.1099/vir.0.19001-0

    Article  PubMed  CAS  Google Scholar 

  22. Lu Y, Qiu Q, Li C, et al (2020) Computational identification of self-inhibitory peptides from white spot syndrome virus envelope protein VP28

  23. Zhan S, Aweya JJ, Wang F et al (2019) Litopenaeus vannamei attenuates white spot syndrome virus replication by specific antiviral peptides generated from hemocyanin. Dev Comp Immunol 91:50–61. https://doi.org/10.1016/j.dci.2018.10.005

    Article  PubMed  CAS  Google Scholar 

  24. Rogers JD, Ajami NJ, Fryszczyn BG et al (2013) Identification and characterization of a peptide affinity reagent for detection of noroviruses in clinical samples. J Clin Microbiol 51:1803–1808. https://doi.org/10.1128/JCM.00295-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Park JP, Cropek DM, Banta S (2009) High affinity peptides for the recognition of the heart disease biomarker troponin I identified using phage display. Biotechnol Bioeng 105:n/a-n/a. https://doi.org/10.1002/bit.22597

    Article  CAS  Google Scholar 

  26. Lim JM, Kim JH, Ryu MY et al (2018) An electrochemical peptide sensor for detection of dengue fever biomarker NS1. Anal Chim Acta 1026:109–116. https://doi.org/10.1016/j.aca.2018.04.005

    Article  PubMed  CAS  Google Scholar 

  27. Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  28. Humphrey W, Dalke ASK (1996) VMD: visual molecular dynamics. J Mol Graph Model 14:33–38

    Article  CAS  Google Scholar 

  29. Pierce BG, Wiehe K, Hwang H et al (2014) ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30:1771–1773. https://doi.org/10.1093/bioinformatics/btu097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Pierce B, Weng Z (2007) ZRANK: reranking protein docking predictions with an optimized energy function. Proteins Struct Funct Bioinform 67:1078–1086. https://doi.org/10.1002/prot.21373

    Article  CAS  Google Scholar 

  31. Li L, Chen R, Weng Z (2003) RDOCK: refinement of rigid-body protein docking predictions. Proteins Struct Funct Genet 53:693–707. https://doi.org/10.1002/prot.10460

    Article  PubMed  CAS  Google Scholar 

  32. Nanduri V, Sorokulova IB, Samoylov AM et al (2007) Phage as a molecular recognition element in biosensors immobilized by physical adsorption. Biosens Bioelectron 22:986–992. https://doi.org/10.1016/j.bios.2006.03.025

    Article  PubMed  CAS  Google Scholar 

  33. Agrawal S, Kulabhusan PK, Joshi M et al (2016) A high affinity phage-displayed peptide as a recognition probe for the detection of Salmonella Typhimurium. J Biotechnol 231:40–45. https://doi.org/10.1016/j.jbiotec.2016.05.027

    Article  PubMed  CAS  Google Scholar 

  34. de la Guardia C, Quijada M, Lleonart R (2017) Phage-displayed peptides selected to bind envelope glycoprotein show antiviral activity against dengue virus serotype 2. Adv Virol 2017:1–11. https://doi.org/10.1155/2017/1827341

    Article  CAS  Google Scholar 

  35. Altschul SF, Gish W, Miller W et al (1990) BLAST_article.pdf. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  36. Holm L (2020) DALI and the persistence of protein shape. Protein Sci 29:128–140. https://doi.org/10.1002/pro.3749

    Article  PubMed  CAS  Google Scholar 

  37. Kharche S, Joshi M, Sengupta D, Chattopadhyay A (2018) Membrane-induced organization and dynamics of the N-terminal domain of chemokine receptor CXCR1: insights from atomistic simulations. Chem Phys Lipids 210:142–148. https://doi.org/10.1016/j.chemphyslip.2017.09.003

    Article  PubMed  CAS  Google Scholar 

  38. Nikte S, Gahankari A, Mulla J et al (2020) In vitro and in silico studies on membrane interactions of diverse Capsicum annuum flower γ-thionin peptides. Proteins Struct Funct Bioinform 88:227–236. https://doi.org/10.1002/prot.25791

    Article  CAS  Google Scholar 

  39. Huang P-Y, Leu J-H, Chen L-L (2014) A newly identified protein complex that mediates white spot syndrome virus infection via chitin-binding protein. J Gen Virol 95:1799–1808. https://doi.org/10.1099/vir.0.064782-0

    Article  PubMed  CAS  Google Scholar 

  40. Dinesh S, Sudharsana S, Mohanapriya A et al (2017) Molecular docking and simulation studies of Phyllanthus amarus phytocompounds against structural and nucleocapsid proteins of white spot syndrome virus. 3 Biotech 7:353. https://doi.org/10.1007/s13205-017-0938-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Sudharsana S, Rajashekar Reddy CB, Dinesh S et al (2016) Molecular docking and simulation studies of 3-(1-chloropiperidin-4-yl)-6-fluoro benzisoxazole 2 against VP26 and VP28 proteins of white spot syndrome virus. J Fish Dis 39:1231–1238. https://doi.org/10.1111/jfd.12454

    Article  PubMed  CAS  Google Scholar 

  42. Vreven T, Pierce BG, Borrman TM, Weng Z (2017) Performance of ZDOCK and IRAD in CAPRI rounds 28-34. Proteins Struct Funct Bioinform 85:408–416. https://doi.org/10.1002/prot.25186

    Article  CAS  Google Scholar 

  43. Wiehe K, Pierce B, Tong WW et al (2007) The performance of ZDOCK and ZRANK in rounds 6-11 of CAPRI. Proteins Struct Funct Bioinform 69:719–725. https://doi.org/10.1002/prot.21747

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MJ thanks DST-PURSE for HPC facility and Bioinformatics Centre for infrastructure support. MJ also thanks the generous support from Biovia for the work-from-home use of Discovery Studio Academic Research Suite and PARAM Yuva II cluster of CDAC, Pune, for computational time.

Funding

SJ acknowledges the award of Ph. D fellowship (Award no. 09/670(0079)/2017-EMR-1) to Council of Scientific & Industrial Research (CSIR), India.

Author information

Authors and Affiliations

Authors

Contributions

SJ, GP performed the simulations and drafted the manuscript, GP worked extensively for the computational study, PK conducted lab experiments, ASS, KMP supervised the work and edited the manuscript, MJ, JMR conceived the idea, analyzed the results and finalized the manuscript.

Corresponding authors

Correspondence to Manali Joshi or J. M. Rajwade.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 3.03 mb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamalpure, S., Panditrao, G., Kulabhusan, P.K. et al. In silico studies on the interaction of phage displayed biorecognition element (TFQAFDLSPFPS) with the structural protein VP28 of white spot syndrome virus. J Mol Model 26, 264 (2020). https://doi.org/10.1007/s00894-020-04524-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04524-z

Keywords