Skip to main content

Immobilization of UiO-67 with photochromic spiropyrans: a quantum chemical study

Abstract

Post-synthetic modification of MOFs allows tuning the properties according to desired applications. The incorporation of photoactive molecules introduces sensitivity to radiation properties to the matrix of MOFs. We report on the theoretical analysis of possible ways of construction photoactive MOFs from UiO-67 and spiropyran molecules containing different carbonyl substituents. Large-scale computer modeling with the use of density functional theory method allowed us to select the most energy-efficient schemes of design. It was revealed that the most preferred way of immobilization of UiO-67 is the interaction with the carboxylic group in the indoline fragment of spiropyran. These results are promising for the application of MOFs modified in this way as photoactive sensors.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:974–97+

    CAS  Article  Google Scholar 

  2. 2.

    Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112:673–674

    CAS  Article  Google Scholar 

  3. 3.

    Butova VV, Soldatov MA, Guda AA, Lomachenko KA, Lamberti C (2016) Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russ Chem Rev 85:280–307

    CAS  Article  Google Scholar 

  4. 4.

    Eddaoudi M, Moler DB, Li HL, Chen BL, Reineke TM, O’Keeffe M, Yaghi OM (2001) Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc Chem Res 34:319–330

    CAS  Article  Google Scholar 

  5. 5.

    Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705–714

    CAS  Article  Google Scholar 

  6. 6.

    Kalmutzki MJ, Hanikel N, Yaghi OM (2018) Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci Adv 4:eaat9180

  7. 7.

    Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–472

    CAS  Article  Google Scholar 

  8. 8.

    Rowsell JLC, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc 128:1304–1315

    CAS  Article  Google Scholar 

  9. 9.

    Coronado E, Espallargas GM (2013) Dynamic magnetic MOFs. Chem Soc Rev 42:1525–1539

    CAS  Article  Google Scholar 

  10. 10.

    Asadi K, van der Veen MA (2016) Ferroelectricity in metal-organic frameworks: characterization and mechanisms. Eur J Inorg Chem 27:4332–4344

  11. 11.

    Espallargas GM, Coronado E (2018) Magnetic functionalities in MOFs: from the framework to the pore. Chem Soc Rev 47:533–557

    Article  Google Scholar 

  12. 12.

    Butova VV, Budnyk AP, Charykov KM, Vetlitsyna-Novikova KS, Bugaev AL, Guda AA, Damin A, Chavan SM, Øien-ØDegaard S, Lillerud KP, Soldatov AV, Lamberti C (2019) Partial and complete substitution of the 1,4-benzenedicarboxylate linker in UiO-66 with 1,4-naphthalenedicarboxylate: synthesis, characterization, and H2-adsorption properties. Inorg Chem 58:1607–1620

    CAS  Article  Google Scholar 

  13. 13.

    Butova VV, Polyakov VA, Budnyk AP, Aboraia AM, Bulanova EA, Guda AA, Reshetnikova EA, Podkovyrina YS, Lamberti C, Soldatov AV (2018) Zn/Co ZIF family: MW synthesis, characterization and stability upon halogen sorption. Polyhedron 154:457–464

    CAS  Article  Google Scholar 

  14. 14.

    Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic-inorganic nanocomposites. J Mater Chem 15:3559–3592

    CAS  Article  Google Scholar 

  15. 15.

    Zhu QL, Xu Q (2014) Metal-organic framework composites. Chem Soc Rev 43:5468–5512

    CAS  Article  Google Scholar 

  16. 16.

    Cui YJ, Li B, He HJ, Zhou W, Chen BL, Qian GD (2016) Metal-organic frameworks as platforms for functional materials. Acc Chem Res 49:483–493

    CAS  Article  Google Scholar 

  17. 17.

    Butova VV, Kirichkov MV, Budnyk AP, Guda AA, Soldatov MA, Lamberti C, Soldatov AV (2018) A room-temperature growth of gold nanoparticles on MOF-199 and its transformation into the [Cu2(OH)(BTC)(H2O)]n phase. Polyhedron 154:357–363

    CAS  Article  Google Scholar 

  18. 18.

    Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851

    Article  Google Scholar 

  19. 19.

    Valenzano L, Civalleri B, Chavan S, Bordiga S, Nilsen MH, Jakobsen S, Lillerud KP, Lamberti C (2011) Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem Mater 23:1700–1718

    CAS  Article  Google Scholar 

  20. 20.

    Chavan S, Vitillo JG, Gianolio D, Zavorotynska O, Civalleri B, Jakobsen S, Nilsen MH, Valenzano L, Lamberti C, Lillerud KP, Bordiga S (2012) H-2 storage in isostructural UiO-67 and UiO-66 MOFs. Phys Chem Chem Phys 14:1614–1626

    CAS  Article  Google Scholar 

  21. 21.

    Shearer GC, Chavan S, Ethiraj J, Vitillo JG, Svelle S, Olsbye U, Lamberti C, Bordiga S, Lillerud KP (2014) Tuned to perfection: ironing out the defects in metal-organic framework UiO-66. Chem Mater 26:4068–4071

    CAS  Article  Google Scholar 

  22. 22.

    Butova VV, Budnyk AP, Guda AA, Lomachenko KA, Bugaev AL, Soldatov AV, Chavan SM, Øien-ØDegaard S, Olsbye U, Lillerud KP, Atzori C, Bordiga S, Lamberti C (2017) Modulator effect in UiO-66-NDC (1, 4-naphthalenedicarboxylic acid) synthesis and comparison with UiO-67-NDC isoreticular metal-organic frameworks. Cryst Growth Des 17:5422–5431

  23. 23.

    Garg S, Schwartz H, Kozlowska M, Kanj AB, Muller K, Wenzel W, Ruschewitz U, Heinke L (2019) Conductance photoswitching of metal-organic frameworks with embedded spiropyran. Angew Chem Int Ed 58:1193–1197

    CAS  Article  Google Scholar 

  24. 24.

    Ozhogin IV, Tkachev VV, Mukhanov EL, Lukyanov BS, Chernyshev AV, Lukyanova MB, Aldoshin SM (2015) Studies of structure and photochromic properties of spiropyrans based on 4,6-diformyl-2-methylresorcinol. Russ Chem Bull 64:672–676

    CAS  Article  Google Scholar 

  25. 25.

    Klajn R (2014) Spiropyran-based dynamic materials. Chem Soc Rev 43:148–184

    CAS  Article  Google Scholar 

  26. 26.

    Minkin VI (2013) Light-controlled molecular switches based on bistable spirocyclic organic and coordination compounds. Russ Chem Rev 82:1–26

    Article  Google Scholar 

  27. 27.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision E.01. Gaussian, Inc., Wallingford

    Google Scholar 

  28. 28.

    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  29. 29.

    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Article  Google Scholar 

  30. 30.

    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    CAS  Article  Google Scholar 

  31. 31.

    Chemcraft, version 1.7 (2013) http://www.chemcraftprog.com

Download references

Funding

The reported study was funded by RFBR according to the research project № 18-29-04053.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vera V. Butova.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Starikov, A.G., Butova, V.V., Ozhogin, I.V. et al. Immobilization of UiO-67 with photochromic spiropyrans: a quantum chemical study. J Mol Model 26, 212 (2020). https://doi.org/10.1007/s00894-020-04478-2

Download citation

Keywords

  • MOF
  • Metal-organic framework
  • Functionalization
  • Spiropyran