Skip to main content
Log in

Theoretical study of CO2 hydrogenation on Cu surfaces

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

CO2 reduction has attracted extensive attentions for its wide applications in chemical engineering and green chemistry. As one of major commercial catalysts, Cu have been widely studied considering its low price and high catalytic efficiency. However, previous studies were mostly focused on the Cu(111) surface, while other surfaces were rarely studied. In this work, we employed the density functional theory calculations to fully investigate the adsorption of all intermediates and products of CO2 hydrogenation on three low-index surfaces as Cu(111), Cu(100), and Cu(110), which have been reported as the main facets of Cu nanoparticles under reaction conditions. Besides, the reaction pathways were also discussed. Our results indicated CO2 hydrogenation is preferred to adopt formate pathways on the Cu surfaces, while the COOH pathway is least favorable. Moreover, Cu(100) and Cu(110) surfaces have the comparable (even better) catalytic activities compared with Cu(111) surface. This study provides the fundamental data for the adsorption and reaction of CO2 hydrogenation, which will be helpful for the design of Cu-based nanocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cox PM, Betts RA, Jones CD et al (2000) Acceleration of global warming due to carbon-cycle Ffeedbacks in a coupled climate model. Nat 408:184–187. https://doi.org/10.1038/35047138

    Article  CAS  Google Scholar 

  2. Waugh KC (2012) Methanol synthesis. Catal Lett 142:1153–1166. https://doi.org/10.1007/s10562-012-0905-2

    Article  CAS  Google Scholar 

  3. Yoshihara J, Parker SC, Schafer A et al (1995) Methanol synthesis and reverse water-gas shift kinetics over clean polycrystalline copper. Catal Lett 31:313–324. https://doi.org/10.1007/BF00808595

    Article  CAS  Google Scholar 

  4. Chunshan S (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115:2–32. https://doi.org/10.1016/j.cattod.2006.02.029

    Article  CAS  Google Scholar 

  5. Mikkelsen M, Jørgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 3:43–81. https://doi.org/10.1039/B912904A

    Article  CAS  Google Scholar 

  6. Shyam K, Pedro JR, Jingguang GC et al (2017) Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Sci 355:1296–1299. https://doi.org/10.1126/science.aal3573

    Article  CAS  Google Scholar 

  7. Porosoff MD, Chen JG (2013) Trends in the catalytic reduction of CO2 by hydrogen over supported monometallic and bimetallic catalysts. J Catal 301:30–37. https://doi.org/10.1016/j.jcat.2013.01.022

    Article  CAS  Google Scholar 

  8. Felix S, Irek S, Frank AP et al (2014) Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat Chem 6:320–324. https://doi.org/10.1038/nchem.1873

    Article  CAS  Google Scholar 

  9. Robert WD, Dennis RH, Frederick WW et al (2010) Heterogeneous catalytic CO2 conversion to value-added hydrocarbons. Energ Environ Sci 3:884–890. https://doi.org/10.1039/C001514H

    Article  Google Scholar 

  10. Yawei L, Siew HC, Qiang S (2015) Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review. Nanoscale 7:8663–8683. https://doi.org/10.1039/c5nr00092k

    Article  Google Scholar 

  11. Jun M, Nannan S, Xuelan Z et al (2009) A short review of catalysis for CO2 conversion. Catal Today 148:221–231. https://doi.org/10.1016/j.cattod.2009.08.015

    Article  CAS  Google Scholar 

  12. Grabow LC, Mavrikakis M (2011) Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal 1:365–384. https://doi.org/10.1021/cs200055d

    Article  CAS  Google Scholar 

  13. Lingna L, Fei F, Zhao J et al (2017) Mechanistic study of Pd−Cu bimetallic catalysts for methanol synthesis from CO2 hydrogenation. J Phys Chem C 47:26287–26299. https://doi.org/10.1021/acs.jpcc.7b06166

    Article  CAS  Google Scholar 

  14. Lingna L, Hedan Y, Zhao J, Tao F (2018) Theoretical study of methanol synthesis from CO2 hydrogenation on PdCu3(111) surface. Appl Surf Sci 451:333–345. https://doi.org/10.1016/j.apsusc.2018.04.128

    Article  CAS  Google Scholar 

  15. Poul LH, Jakob BW, Stig H et al (2002) Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295:2053–2055. https://doi.org/10.1126/science.1069325

    Article  Google Scholar 

  16. Kwang DJ, Alexis TB (2000) Role of hydrogen spillover in methanol synthesis over Cu/ZrO2. J Catal 193:207–223. https://doi.org/10.1006/jcat.2000.2881

    Article  Google Scholar 

  17. Yafan Z, Yong Y, Charles M et al (2011) Insight into methanol synthesis from CO2 hydrogenation on Cu(111): complex reaction network and the effects of H2O. J Catal 281:199–211. https://doi.org/10.1016/j.jcat.2011.04.012

    Article  CAS  Google Scholar 

  18. Jiang Z, Guo SY, Fang T (2017) Theoretical investigation on the dehydrogenation mechanism of CH3OH on Cu (100) surface. J Alloys Compd 698:617–625. https://doi.org/10.1016/j.jallcom.2016.12.220

    Article  CAS  Google Scholar 

  19. Wanqi L, Dunyou W, Junfeng R (2020) Methanol synthesis from CO2/H2 on Cu (100): two-tier ab initio molecular dynamics study. Appl Surf Sci 505:144528. https://doi.org/10.1016/j.apsusc.2019.144528

    Article  CAS  Google Scholar 

  20. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561. https://doi.org/10.1103/PhysRevB.48.13115

    Article  CAS  Google Scholar 

  21. Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew Burke -Ernzerhof functionals. Phys Rev B 59:7413–7421. https://doi.org/10.1103/physrevb.59.7413

    Article  Google Scholar 

  22. Marek G, Andreas E, Jürgen H (2004) CO adsorption on closepacked transition and noble metal surfaces: trends from ab initio calculations. J Phys Condens Matter 16:1141–1164. https://doi.org/10.1088/0953-8984/16/8/001

    Article  CAS  Google Scholar 

  23. Kareem MG, Icell MS, Nageh KA (2019) First-principles descriptors of CO chemisorption on Ni and Cu surfaces. Phys Chem Chem Phys 21:11476–11487. https://doi.org/10.1039/c9cp00881k

    Article  CAS  Google Scholar 

  24. Lucas F, Tigran M, Sung MK et al (2017) Confronting the role of Ni/Al2O3 interfaces in water-gas shift and dry reforming of methane. J Am Chem Soc 139:17128–17139. https://doi.org/10.1021/jacs.7b08984

    Article  CAS  Google Scholar 

  25. Malte B, Felix S, Igor K et al (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Sci 336:893–897. https://doi.org/10.1126/science.1219831

    Article  CAS  Google Scholar 

  26. Jiang Z, Qin P, Fang T (2017) Decomposition mechanism of formic acid on Cu (111) surface: a theoretical study. Appl Surf Sci 396:857–864. https://doi.org/10.1016/j.apsusc.2016.11.042

    Article  CAS  Google Scholar 

  27. Leny ÁF, Francesc V, Almudena NE et al (2015) On the hydrogen adsorption and dissociation on Cu surfaces and nanorows. Surf Sci 646:221–229. https://doi.org/10.1016/j.susc.2015.08.005

    Article  CAS  Google Scholar 

  28. Yixiong Y, Michael GW, Ping L (2012) Theoretical study of methanol synthesis from CO2 hydrogenation on metal-doped Cu(111) surfaces. J Phys Chem C 116:248–256. https://doi.org/10.1021/jp208448c

    Article  CAS  Google Scholar 

  29. Jeffrey AH, Jessica S et al (2014) Trends in formic acid decomposition on model transition metal surfaces: a density functional theory study. ACS Catal 4:4434–4445. https://doi.org/10.1021/cs500737p

    Article  CAS  Google Scholar 

  30. Hofmann P, Schindler KM, Bao S et al (1994) The geometric structure of the surface methoxy species on Cu(111). Surf Sci 304:74–84. https://doi.org/10.1016/0039-6028(94)90754-4

    Article  CAS  Google Scholar 

  31. Johnston SM, Mulligan A, Dhanak V, Kadodwala M (2003) The structure of methanol and methoxy on Cu(111). Surf Sci 530:111–119. https://doi.org/10.1016/S0039-6028(03)00385-6

    Article  CAS  Google Scholar 

  32. Jie W, Guichang W (2018) Promotion effect of methane activation on Cu(111) by the surface active oxygen species: a combination of DFT and ReaxFF study. J Phys Chem C 122:17338–17346. https://doi.org/10.1021/acs.jpcc.8b05294

    Article  CAS  Google Scholar 

  33. Kareem MG, Icell MS, Amr UA et al (2018) Unveiling CO adsorption on Cu surfaces: new insights from molecular orbital principles. Phys Chem Chem Phys 20:25892–25900. https://doi.org/10.1039/C8CP04253E

    Article  Google Scholar 

  34. Xin W, Chaofang D, Zhanghua C et al (2015) Insights into SO2 and H2O co-adsorption on Cu (100) surface with calculations of density functional theory. Trans Nonferrous Met Soc China 25:4102–4109. https://doi.org/10.1016/S1003-6326(15)64059-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The computational resources utilized in this research were provided by Shanghai Supercomputer Center, and National Supercomputer Centers in Guangzhou.

Funding

This work is supported by the National Natural Science Foundation of China (21773287, 51973046). BZ thanks the Youth Innovation Promotion Association, CAS, and the financial support of Key Research Program of Frontier Sciences, CAS, Grant No. ZDBS-LY-7012.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guiling Zhang or Yi Gao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 8529 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Zhu, B., Zhang, G. et al. Theoretical study of CO2 hydrogenation on Cu surfaces. J Mol Model 26, 202 (2020). https://doi.org/10.1007/s00894-020-04448-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04448-8

Keywords

Navigation