Skip to main content
Log in

Radial distribution function for liquid gallium from experimental structure factor: a Hopfield neural network approach

Journal of Molecular Modeling Aims and scope Submit manuscript


Hopfield neural network was used to retrieve liquid gallium radial distribution function from an experimental structure factor, obtained at 959 K. The inversion framework was carried out under two initial conditions: (a) a constant radial distribution function corresponding to an ideal gas and (b) a step function, simulating a gas with square well potential of interaction. Both situations lead to accurate inverse results if compared with the radial distribution function obtained by Bellisent-Funel et al., using the Fourier transform method and Monte Carlo simulation. The Hopfield neural network has shown to be a powerful strategy to calculate the radial distribution function from experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Singh HB, Holz A (1983) Structure factor of liquid alkali metals. Phys Rev A 28:1108–1113.

    Article  CAS  Google Scholar 

  2. Yarnell JL, Katz MJ, Wenzel RG, Koenig SH (1973) Structure factor and radial distribution function for liquid argon at 85 K. Phys. Rev. A 7:2130–2144.

    Article  CAS  Google Scholar 

  3. Gong XG, Chiarotti GL, Parrinello M, Tosatti E (1993) Coexistence of monatomic and diatomic molecular fluid character in liquid gallium. EPL (Europhys Lett) 21:469–475.

    Article  CAS  Google Scholar 

  4. Narten AH (1972) Liquid gallium: comparison of X-Ray and Neutron-Diffraction data. J Chem Phys 56:1185–1189.

    Article  CAS  Google Scholar 

  5. Ascarelli P (1966) Atomic radial distributions and ion-ion potential in liquid gallium. Phys Rev 143:36–47.

    Article  CAS  Google Scholar 

  6. Yagafarov OF, Katayama Y, Brazhkin VV, Lyapin AG, Saitoh H (2012) Energy dispersive X-ray diffraction and reverse Monte Carlo structural study of liquid gallium under pressure. Phys Rev B 86:174103–1–174103-9.

    Article  Google Scholar 

  7. Lemes NHT, Borges E, Sousa RV, Braga JP (2008) Potential energy function from differential cross-section data: an inverse quantum scattering theory approach. Int J Quantum Chem 108:2623–2627.

    Article  CAS  Google Scholar 

  8. Sebastião R C O, Pacheco CN, Braga JP, Piló-Veloso D (2006) Diffusion coefficient distribution from NMR-DOSY experiments using Hopfield neural network. J Magn Reson 182:22–28.

    Article  Google Scholar 

  9. Neves JL, Braga JP, Braga AP, de Almeida MB (2002) Recurrent neural network model to retrieve the long range spherical potential energy function from second virial coefficient. Inverse probl Eng 10:153–162.

    Article  Google Scholar 

  10. Carvalho FS, Braga JP, Alves MO, Gonçalves C E M (2020) Neural network in the inverse problem of liquid argon structure factor: from gas-to-liquid radial distribution function. Theor Chem Acc 139:29.

    Article  CAS  Google Scholar 

  11. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 79:2554–2558.

    Article  CAS  Google Scholar 

  12. Lemes NHT, Borges E, Braga JP (2007) A general algorithm to solve linear and nonlinear inverse problems. J Braz Chem Soc 18:1342–1347.

    Article  CAS  Google Scholar 

  13. Bellissent-Funel MC, Chieux P, Levesque D, Weis JJ (1989) Structure factor and effective two-body potential for liquid gallium. Phys Rev A 39:6310–6318.

    Article  CAS  Google Scholar 

  14. Scherm R (1972) Fundamentals of neutron scattering by condensed matter. Ann Phys 14:349–370

    Article  Google Scholar 

  15. Powell JL, Crasemann B (1961) Quantum mechanics. Addison-Wesley Publishing, London

    Google Scholar 

  16. Egami T, Billinge SJL (2003) Underneath the Bragg peaks: structural analysis of complex materials. Elsevier, New York

    Book  Google Scholar 

  17. Hansen JP, McDonald IR (1990) Theory of simple liquids. Academic Press, New York

    Google Scholar 

  18. Hopfield JJ, Tank DW (1985) “Neural” computation of decisions in optimization problems. Biol Cybern 52:141–152.

    CAS  PubMed  Google Scholar 

Download references


The authors receive financial support from CNPq.

Author information

Authors and Affiliations


Corresponding author

Correspondence to F. S. Carvalho.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection XX-Brazilian Symposium of Theoretical Chemistry (SBQT2019)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, F.S., Braga, J.P. Radial distribution function for liquid gallium from experimental structure factor: a Hopfield neural network approach. J Mol Model 26, 193 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: