Skip to main content
Log in

Electronic investigation and spectroscopic analysis using DFT with the long-range dispersion correction on the six lowest conformers of 2.2.3-trimethyl pentane

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The conformational stability and internal rotation barriers, HOMO-LUMO gap and related properties, molecular static polarizability and hyperpolarizability parameters, and the NBO delocalization energies associated with the internal charge transfer (ICT) of 2.2.3-trimethylpentane in the ground state were carried out taking into account the long range dispersion correction through CAM-B3LYP and WB97XD levels at aug-cc-pvtz basis set. The six lowest conformations were differentiated by a deep and multiple spectroscopic investigation. The ultraviolet-visible (UV-Vis) absorption bands are assigned using molecular orbital data obtained by TD-WB97XD/aug-cc-pvtz calculations, and carbon 13C NMR signal peaks have been assigned using GIAO-WB97XD/aug-cc-pvtz method. In addition, the normal mode calculations of the most and less stable conformers using a scaled force field in terms of non-redundant local symmetry coordinates have been confronted to the experimental vibrational spectra temperature dependency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. WG Lovell (1948) Knocking Characteristics of Hydrocarbons. nd Eng Chem 40:2388–2438

  2. Westbrook CK, Pitz WJ, Herbinet O et al (2009) A comprehensive detailed chemical kinetic reaction mechanism for combustion of n -alkane hydrocarbons from n -octane to n -hexadecane. Combust Flame 156:181–199. https://doi.org/10.1016/j.combustflame.2008.07.014

    Article  CAS  Google Scholar 

  3. Curran HJ, Gaffuri P, Pitz WJ et al (1996) Autoignition chemistry in a motored engine: an experimental and kinetic modeling study. Symp Combust 26:2669–2677. https://doi.org/10.1016/S0082-0784(96)80102-0

    Article  Google Scholar 

  4. Westbrook CK, Pitz WJ, Boercker JE et al (2002) Detailed chemical kinetic reaction mechanisms for autoignition of isomers of heptane under rapid compression 29:1311–1318

  5. Results E, Ribaucour M, Minetti R et al (2000) Ignition of isomers of pentane: an experimental and kinetic modeling study. Proc Combust Inst 28:1671–1678. https://doi.org/10.1016/S0082-0784(00)80566-4

    Article  Google Scholar 

  6. Albahri TA (2003) Structural group contribution method for predicting the octane number of pure hydrocarbon liquids. Ind Eng Chem Res 42:657–662. https://doi.org/10.1021/ie020306+

    Article  CAS  Google Scholar 

  7. Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK (2002) A comprehensive modeling study of iso-octane oxidation. Combust Flame 129:253–280. https://doi.org/10.1016/S0010-2180(01)00373-X

    Article  CAS  Google Scholar 

  8. Enech OC (2011) A review on petroleum: source, uses, processing, products and the Environement. J Appl Sci 11:2084–2091

    Article  Google Scholar 

  9. Moon CJ, Ahn A, Min A et al (2017) Conformationally resolved spectroscopy of jet-cooled methacetin. Chem Phys Lett 688:26–32. https://doi.org/10.1016/j.cplett.2017.09.049

    Article  CAS  Google Scholar 

  10. Hachim ME, Sadik K, Byadi S, Aboulmouhajir A (2019) Ab initio study on the six lowest energy conformers of iso-octane: conformational stability, barriers to internal rotation, natural bond orbital and first-order hyperpolarizability analyses, UV and NMR predictions, spectral temperature sensitivity, and sc. J Mol Model 25. https://doi.org/10.1007/s00894-019-4105-5

  11. Wagner JP, Schreiner PR (2015) London dispersion in molecular chemistry - reconsidering steric effects. Angew Chem Int Ed 54:12274–12296. https://doi.org/10.1002/anie.201503476

    Article  CAS  Google Scholar 

  12. Tawada Y, Tsuneda T, Yanagisawa S et al (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120:8425–8433. https://doi.org/10.1063/1.1688752

    Article  CAS  PubMed  Google Scholar 

  13. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  14. Da Chai J, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys:128. https://doi.org/10.1063/1.2834918

  15. Förner W, Badawi HM (2010) Rotational barriers and vibrational spectra of phenyl ketene, azide, and isocyanate. J Theor Comput Chem 9:511–529. https://doi.org/10.1142/S0219633610005797

    Article  Google Scholar 

  16. Mollania F, Raissi H (2013) Molecular structure, vibrational assignments, conformational stability, ground and excited state hydrogen-bonding analysis of 2-Nitroso vinyl amine. J Theor Comput Chem 12. https://doi.org/10.1142/S0219633613500727

  17. Antony J, Grimme S (2006) Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules. Phys Chem Chem Phys 8:5287–5293. https://doi.org/10.1039/b612585a

    Article  CAS  PubMed  Google Scholar 

  18. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473. https://doi.org/10.1002/jcc.20078

    Article  CAS  PubMed  Google Scholar 

  19. Tamer Ö, Avci D, Atalay Y (2013) Spectroscopic study, nlo properties and homo-lumo analysis on different donor and acceptor substituents of thiazolylazopyrimidine chromophores. J Theor Comput Chem 12. https://doi.org/10.1142/S0219633613500399

  20. Fukui K (1982) Role of frontier orbitals in chemical reactions. Am Assoc Adv Sci 218:747–754

    CAS  Google Scholar 

  21. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  22. Venkatesh G, Govindaraju M, Vennila P, Kamal C (2016) Molecular structure, vibrational spectral assignments (FT-IR and FT-RAMAN), NMR, NBO, HOMO-LUMO and NLO properties of 2-nitroacetophenone based on DFT calculations. J Theor Comput Chem:15. https://doi.org/10.1142/S0219633616500073

  23. Muhammad S, Shehzad RA, Iqbal J et al (2019) Benchmark study of the linear and nonlinear optical polarizabilities in proto-type NLO molecule of para -nitroaniline. J Theor Comput Chem 18. https://doi.org/10.1142/S0219633619500305

  24. Natarajan S, Shanmugam G, Dhas SAMB (2008) Growth and characterization of a new semi organic NLO material: L-tyrosine hydrochloride. Cryst Res Technol 43:561–564. https://doi.org/10.1002/crat.200711048

    Article  CAS  Google Scholar 

  25. Ben SI, Hannachi N, Roisnel T, Hlel F (2019) Optical, UV-Vis spectroscopy studies, electrical and dielectric properties of transition metal-based of the novel organic-inorganic hybrid (C6 H10 N2)(Hg2Cl5)2.3H2O. J Adv Dielectr 9:1–15. https://doi.org/10.1142/S2010135X19500401

    Article  CAS  Google Scholar 

  26. Fitch WL, Mcgregor M, Katritzky AR et al (2002) Prediction of ultraviolet spectral absorbance using quantitative structure-property relationships. J Chem Inf Comput Sci 42:830–840

    Article  CAS  PubMed  Google Scholar 

  27. Bourass M, Touimi Benjelloun A, Benzakour M et al (2017) DFT/TD-DFT characterization of conjugational electronic structures and spectral properties of materials based on thieno[3,2-b][1]benzothiophene for organic photovoltaic and solar cell applications. J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2017.01.001

  28. Al-Wahaibi LH, Öztürk N, Hassan HM et al (2018) Experimental (FT-IR, laser-Raman and NMR) and theoretical comparative study on 2-benzylsulfanyl-4-pentyl-6-(phenylsulfanyl)pyrimidine-5-carbonitrile, a potential bioactive agent. J Theor Comput Chem 17. https://doi.org/10.1142/S0219633618500359

  29. Mohamed TA, Shaaban IA, Soliman UA, Zoghaib WM (2019) Computational studies, NMR, Raman and infrared spectral analysis of centrosymmetric (2Z,4Z)-Hexa-2,4-dienedinitrile. J Theor Comput Chem:18. https://doi.org/10.1142/S0219633619500111

  30. Colherinhas G, Fileti EE, Malaspina T (2018) GIAO-DFT-NMR characterization of fullerene-cucurbituril complex: the effects of the C60@CB[9] host-guest mutual interactions. J Mol Model 24. https://doi.org/10.1007/s00894-018-3719-3

  31. Oliveira LBA, Colherinhas G (2017) TD-DFT and GIAO-NMR spectroscopy studies for maltose and (α- and β)-glucose in water solution using S-MC/QM polarization methodology. J Mol Liq 237:295–303. https://doi.org/10.1016/j.molliq.2017.04.108

    Article  CAS  Google Scholar 

  32. Arasu N, Samuel Asirvatham P, Krishna Priya M, Revathi BK (2019) Spectroscopic (FT-IR, Raman, 13C and 1H NMR) investigation, molecular orbital calculation and thermal properties of novel piperidine derivative compound by quantum chemical calculation. Materials Today: Proceedings 8:47–56. https://doi.org/10.1016/j.matpr.2019.02.079

    Article  CAS  Google Scholar 

  33. Mouatarif S, Van Alsenoy C, Aboulmouhajir A (2008) Conformational dependence of vibrational spectra in some branched octanes: 3,3- and 2,2-dimethylhexanes. Spectrosc Lett 41:87–99. https://doi.org/10.1080/00387010801943954

    Article  CAS  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, et al (2009) Gaussian 09W tutorial. An introduction to computational chemistry using G09W and Avogadro Software 34

  35. Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) Computational thermochemistry : scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. J Chem Theory Comput 6:2872–2887

    Article  CAS  PubMed  Google Scholar 

  36. Umar Y, Abu-Thabit N, Jerabek P, Ramasami P (2019) Experimental FTIR and theoretical investigation of the molecular structure and vibrational spectra of acetanilide using DFT and dispersion correction to DFT. J Theor Comput Chem 18. https://doi.org/10.1142/S0219633619500093

  37. Siddiqui SA, Dwivedi A, Singh PK et al (2009) Vibrational dynamics and potential energy distribution of two well-known neurotransmitter receptors: Tyramine and dopamine hydrochloride. J Theor Comput Chem 8:433–450. https://doi.org/10.1142/S0219633609004861

    Article  CAS  Google Scholar 

  38. Pauzat F, Talbi D, Miller M et al (1992) Theoretical IR spectra of ionized naphthalene. J Phys Chem 96:7882–7886

    Article  CAS  PubMed  Google Scholar 

  39. Lide DR, Mann DE (1958) Microwave spectra of molecules exhibiting internal rotation. IV. Isobutane, tertiary butyl fluoride, and trimethylphospine. J Chem Phys 29:914–920. https://doi.org/10.1063/1.1744611

    Article  CAS  Google Scholar 

  40. Kilpatrick JE, KS Pitzer (1946) THE ENTROPIES AND RELATED PROPERTIES OF BRANCHED PARAFFIN HYDROCARBONS. Department of Chemistry, University of California, Berkeley, California 435–447

  41. Prosen EJ, Rossini FD (1945) Heats of combustion and formation of the paraffin hydrocarbons at 25 degrees C. J Res Natl Bur Stand 34:263. https://doi.org/10.6028/jres.034.013

    Article  CAS  Google Scholar 

  42. Haynes WM, Dacide RL, Thomas JB (2017) CRC Handbook of Chemistry and Physics97th edn

    Google Scholar 

  43. JB Pedley (1994) Thermochemical data and structures of organic compounds, Volume I

  44. Shankar Rao YB, Prasad MVS, Udaya Sri N, Veeraiah V (2016) Vibrational (FT-IR, FT-Raman) and UV-visible spectroscopic studies, HOMO-LUMO, NBO, NLO and MEP analysis of benzyl (imino (1H-pyrazol-1-yl) methyl) carbamate using DFT calculaions. J Mol Struct 1108:567–582. https://doi.org/10.1016/j.molstruc.2015.12.008

    Article  CAS  Google Scholar 

  45. Sasikala V, Sajan D, Chaitanya K et al (2017) Qualitative and quantitative approach towards the molecular understanding of structural, vibrational and optical features of urea ninhydrin monohydrate. Mater Chem Phys 191:20–34. https://doi.org/10.1016/j.matchemphys.2017.01.013

    Article  CAS  Google Scholar 

  46. Jeyavijayan S (2015) Molecular structure, vibrational spectra, NBO analysis, first hyperpolarizability, and HOMO-LUMO studies of 2-amino-4- Hydroxypyrimidine by density functional method. J Mol Struct 1085:137–146. https://doi.org/10.1016/j.molstruc.2014.12.047

    Article  CAS  Google Scholar 

  47. Alam M, Park S (2018) Molecular structure, spectral studies, NBO, HOMO–LUMO profile, MEP and Mulliken analysis of 3β,6β-dichloro-5α-hydroxy-5α–cholestane. J Mol Struct 1159:33–45. https://doi.org/10.1016/j.molstruc.2018.01.043

    Article  CAS  Google Scholar 

  48. Spectral Database for Organic Compounds SDBS (1990) 13C NMR spectrum of 2,2,3-trimethylpentane. In: National Institute of Advanced Industrial Science and Technology (AIST). https://sdbs.db.aist.go.jp/sdbs/cgi-bin/landingpage?sdbsno=4878. Accessed 26 Jun 2019

  49. Aboulmouhajir A (1994) Conformational stability and vibrational analysis of a series of branched octanes in liquid phase. Antwerp University, Belgium

    Google Scholar 

  50. Aboulmouhajir A, Turrell G (1999) Conformational stability and vibrational analysis of a series of branched octanes III : trimethyl pentanes. Spectrochim Acta 55:1453–1470

    Article  Google Scholar 

  51. Mirkin NG, Krimm S (1993) Ab initio studies of the conformation dependence of the spectra of stable conformers of *pentane and n-hexane. J Phys Chem 97:13887–13895

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aziz Aboulmouhajir.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1231 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hachim, M.E., Sadik, K., Byadi, S. et al. Electronic investigation and spectroscopic analysis using DFT with the long-range dispersion correction on the six lowest conformers of 2.2.3-trimethyl pentane. J Mol Model 26, 168 (2020). https://doi.org/10.1007/s00894-020-04430-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04430-4

Keywords

Navigation