Skip to main content
Log in

Potential application of pristine and Al-doped graphyne-like BN nanosheet for detection of anticancer fluorouracil drug

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We studied the potential application of the pristine and Al-doped graphyne-like BN nanosheets (Al-BN-yne) in 5-fluorouracil (5-FU) drug detection using DFT calculations. The 5-FU drug preferentially adsorbed via its oxygen atom on the B atom of pristine BN-yne with adsorption energy of − 11.7 kcal/mol and no effect on its electronic properties. Replacing a B atom by an Al atom significantly increased the sensitivity and reactivity of BN-yne to the 5-FU drug. Upon the 5-FU interaction with the Al-BN-yne, an energy of 20.3 kcal/mol is released, and the Eg of Al-BN-yne significantly decreased from 4.83 to 3.80 eV, increasing the electrical conductance. Thus, the Al-BN-yne sheet can generate an electronic signal after the 5-FU drug adsorption, being a promising electronic sensor for 5-FU detection. We predicted that the recovery time for 5-FU drug desorption from the Al-BN-yne sheet surface is 0.07 s, demonstrating that it benefits from a short recovery time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heidelberger C, Ansfield FJ (1963) Experimental and clinical use of fluorinated pyrimidines in cancer chemotherapy. Cancer Res. 23:1226–1246

    CAS  PubMed  Google Scholar 

  2. Pattar VP, Nandibewoor ST (2015) Electroanalytical method for the determination of 5-fluorouracil using a reduced graphene oxide/chitosan modified sensor. RSC Adv. 5:34292–34301

    CAS  Google Scholar 

  3. Hua X, Hou X, Gong X, Shen G (2013) Electrochemical behavior of 5-fluorouracil on a glassy carbon electrode modified with bromothymol blue and multi-walled carbon nanotubes. Anal. Methods 5:2470–2476

    CAS  Google Scholar 

  4. Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev.: Cancer 3:330–338

    CAS  PubMed  Google Scholar 

  5. Prasad D, Kumar R (2012) Nonhydrolytic sol–gel derived imprinted polymer–multiwalled carbon nanotubes composite fiber sensors for electrochemical sensing of uracil and 5-fluorouracil. Electrochim. Acta 71:106–115

    CAS  Google Scholar 

  6. Rostamoghli R, Vakili M, Banaei A, Pourbashir E, Jalalierad K (2018) Applying the B12N12 nanoparticle as the CO, CO2, H2O and NH3 sensor. Chemical Review and Letters 1:31–36

    Google Scholar 

  7. Beheshtian J, Peyghan AA, Bagheri Z (2013) Arsenic interactions with a fullerene-like BN cage in the vacuum and aqueous phase. J. Mol. Model. 19:833–837

    CAS  PubMed  Google Scholar 

  8. Beheshtian J, Baei MT, Peyghan AA, Bagheri Z (2013) Nitrous oxide adsorption on pristine and Si-doped AlN nanotubes. J. Mol. Model. 19:943–949

    CAS  PubMed  Google Scholar 

  9. Ghafur Rauf H, Majedi S, Abdulkareem Mahmood E, Sofi M (2019) Adsorption behavior of the Al-and Ga-doped B12N12 nanocages on COn (n = 1, 2) and HnX (n = 2, 3 and X = O, N): a comparative study. Chemical Review and Letters 2:140–150

    Google Scholar 

  10. Noei M, Peyghan AA (2013) A DFT study on the sensing behavior of a BC2N nanotube toward formaldehyde. J. Mol. Model. 19:3843–3850

    CAS  PubMed  Google Scholar 

  11. Bandyopadhyay A, Jana D (2018) Effect and characterization of Stone–Wales defects on graphene quantum dot: a first-principles study. Condens. Matter 3:50

    Google Scholar 

  12. Siadati SA, Rezazadeh S (2018) Switching behavior of an actuator containing germanium, silicon-decorated and normal C20 fullerene. Chemical Review and Letters 1:77–81

    Google Scholar 

  13. Vessally E, Vali M, Hosseinian A, Poorheravi MR, Bekhradnia A (2020) Mustard gas adsorption on the pristine and BN-doped graphynes: a computational study. Phys. Lett. A 126479

  14. Kamel M, Morsali A, Raissi H, Mohammadifard K (2020) Theoretical insights into the intermolecular and mechanisms of covalent interaction of Flutamide drug with COOH and COCl functionalized carbon nanotubes: a DFT approach. Chemical Review and Letters 3:23–37

    Google Scholar 

  15. Bandyopadhyay A, Paria S, Jana D (2018) Tetragonal graphene nanodot as carbon monoxide gas sensor and current rectification device. J. Phys. Chem. Solids 123:172–182

    CAS  Google Scholar 

  16. Babanezhad E, Beheshti A (2018) The possibility of selective sensing of the straight-chain alcohols (including methanol to n-Pentanol) using the C20 fullerene and C18NB nano cage. Chemical Review and Letters 1:82–88

    Google Scholar 

  17. Liu X, Ma T, Pinna N, Zhang J (2017) Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 27:1702168

    Google Scholar 

  18. Li D, Kaner RB (2008) Graphene-based materials. Science 320:1170–1171

    CAS  PubMed  Google Scholar 

  19. Vatanparast M, Shariatinia Z (2018) AlN and AlP doped graphene quantum dots as novel drug delivery systems for 5-fluorouracil drug: theoretical studies. J. Fluor. Chem. 211:81–93

    CAS  Google Scholar 

  20. Peyghan AA, Baei MT, Hashemian S, Torabi P (2013) Adsorption of CO molecule on AlN nanotubes by parallel electric field. J. Mol. Model. 19:859–870

    CAS  PubMed  Google Scholar 

  21. Peyghan AA, Moradi M (2014) DFT study of ozone dissociation on BC3 graphene with Stone–Wales defects. J. Mol. Model. 20:2071

    PubMed  Google Scholar 

  22. Peyghan AA, Noei M, Bagheri Z (2014) Functionalization of the pristine and stone-wales defected BC 3 graphenes with pyrene. J. Mol. Model. 20:2539

    PubMed  Google Scholar 

  23. Peyghan AA, Tabar MB, Kakemam J (2013) NH3 on a BC3 nanotube: effect of doping and decoration of aluminum. J. Mol. Model. 19:3793–3798

    CAS  PubMed  Google Scholar 

  24. Cranford SW, Buehler MJ (2011) Mechanical properties of graphyne. Carbon 49:4111–4121

    CAS  Google Scholar 

  25. Deb J, Bhattacharya B, Singh NB, Sarkar U (2016) First principle study of adsorption of boron-halogenated system on pristine graphyne. Struct. Chem. 27:1221–1227

    CAS  Google Scholar 

  26. Jana S, Bandyopadhyay A, Jana D (2019) Acetylenic linkage dependent electronic and optical behaviour of morphologically distinct ‘-ynes’. Phys. Chem. Chem. Phys. 21:13795–13808

    CAS  PubMed  Google Scholar 

  27. Narita N, Nagai S, Suzuki S, Nakao K (2000) Electronic structure of three-dimensional graphyne. Phys. Rev. B 62:11146

    CAS  Google Scholar 

  28. Li YX, Guo Z, Su Y, Jin XB, Tang XH, Huang JR, Huang XJ, Li MQ, Liu JH (2017) Hierarchical morphology-dependent gas-sensing performances of three-dimensional SnO2 nanostructures. ACS Sens. 2:102–110

    CAS  PubMed  Google Scholar 

  29. Stanoiu A, Somacescu S, Calderon-Moreno JM, Teodorescu VS, Florea OG, Sackmann A, Simion CE (2016) Low level NO2 detection under humid background and associated sensing mechanism for mesoporous SnO2. Sens. Actuators B: Chem. 231:166–174

    CAS  Google Scholar 

  30. Tsuzuki T, Ogata S, Uranagase M (2020) Large-scale DFT simulation of quinone molecules encapsulated in single-walled carbon nanotube for novel Li-ion battery cathode. Comput. Mater. Sci. 171:109281

    CAS  Google Scholar 

  31. Liang B, Bai H, Huang Y (2017) Theoretical investigation on electronic properties and carrier mobilities of BN-substituted graphyne nanoribbons. Computational and Theoretical Chemistry 1115:261–269

    CAS  Google Scholar 

  32. Yang Z, Zhang Y, Guo M, Yun J (2019) Adsorption of hydrogen and oxygen on graphdiyne and its BN analog sheets: a density functional theory study. Comput. Mater. Sci. 160:197–206

    CAS  Google Scholar 

  33. Bhattacharya B, Singh NB, Sarkar U (2015) Pristine and BN doped graphyne derivatives for UV light protection. Int. J. Quantum Chem. 115:820–829

    CAS  Google Scholar 

  34. Chen X, Qiao Q, An L, Xia D (2015) Why do boron and nitrogen doped α-and γ-graphyne exhibit different oxygen reduction mechanism? A first-principles study. J. Phys. Chem. C 119:11493–11498

    CAS  Google Scholar 

  35. Omidvar A, Mohajeri A (2015) Decorated graphyne and its boron nitride analogue as versatile nanomaterials for CO detection. Mol. Phys. 113:3900–3908

    CAS  Google Scholar 

  36. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J. Comput. Chaem. 14:1347–1363

    CAS  Google Scholar 

  37. O’Boyle N, Tenderholt A, Langner K (2008) cclib: A library for package-independent computational chemistry algorithms. J. Comput. Chem. 29:839–845

    PubMed  Google Scholar 

  38. Wright JS, Rowley C, Chepelev L (2005) A ‘universal’B3LYP-based method for gas-phase molecular properties: bond dissociation enthalpy, ionization potential, electron and proton affinity and gas-phase acidity. Mol. Phys. 103:815–823

    CAS  Google Scholar 

  39. Kruse H, Goerigk L, Grimme S (2012) Why the standard B3LYP/6-31G* model chemistry should not be used in DFT calculations of molecular thermochemistry: understanding and correcting the problem. The Journal of organic chemistry 77:10824–10834

    CAS  PubMed  Google Scholar 

  40. Bhattacharya B, Paul D, Sarkar U (2019) Electronic and optical properties of XN-ynes (X = B, Al, Ga): a first-principle study with many-body effects. Appl. Surf. Sci. 495:143612

    CAS  Google Scholar 

  41. Bhattacharya B, Seriani N, Sarkar U (2019) Raman and IR signature of pristine and BN-doped γ-graphyne from first-principle. Carbon 141:652–662

    CAS  Google Scholar 

  42. Ahmadi Peyghan A, Hadipour N, Bagheri Z (2013) Effects of Al-doping and double-antisite defect on the adsorption of HCN on a BC2N nanotube: DFT studies. J. Phys. Chem. C 117:2427–2432

    CAS  Google Scholar 

  43. Eslami M, Vahabi V, Peyghan AA (2016) Sensing properties of BN nanotube toward carcinogenic 4-chloroaniline: a computational study. Phys. E. 76:6–11

    CAS  Google Scholar 

  44. Samadizadeh M, Peyghan AA, Rastegar SF (2015) Sensing behavior of BN nanosheet toward nitrous oxide: a DFT study. Chin. Chem. Lett. 26:1042–1045

    CAS  Google Scholar 

  45. Nejati K, Hosseinian A, Vessally E, Bekhradnia A, Edjlali L (2017) A comparative DFT study on the interaction of cathinone drug with BN nanotubes, nanocages, and nanosheets. Appl. Surf. Sci. 422:763–768

    CAS  Google Scholar 

  46. Xiao C, Ma K, Cai G, Zhang X, Vessally E (2020) Borophene as an electronic sensor for metronidazole drug: a computational study. J. Mol. Graph. Model. 96:107539

    CAS  PubMed  Google Scholar 

  47. Bagheri R, Babazadeh M, Vessally E, Es'haghi M, Bekhradnia A (2018) Si-doped phagraphene as a drug carrier for adrucil anti-cancer drug: DFT studies. Inorg. Chem. Commun. 90:8–14

    CAS  Google Scholar 

  48. Hosseinian A, Salary M, Arshadi S, Vessally E, Edjlali L (2018) The interaction of phosgene gas with different BN nanocones: DFT studies. Solid State Commun. 269:23–27

    Google Scholar 

  49. Behmagham F, Vessally E, Massoumi B, Hosseinian A, Edjlali L (2016) A computational study on the SO2 adsorption by the pristine, Al, and Si doped BN nanosheets. Superlattices and Microstructures 100:350–357

    CAS  Google Scholar 

  50. Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem. Phys. Lett. 255:327–335

    CAS  Google Scholar 

Download references

Funding

The research was partially funded by the National Social Science Foundation of China (Grant No. 18BJY122) and the Soft Science Foundation Project of State Forestry Administration (Grant No. 2017R08-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouyang Shuosi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yulin, Z., Shuosi, O. & Zhao, J. Potential application of pristine and Al-doped graphyne-like BN nanosheet for detection of anticancer fluorouracil drug. J Mol Model 26, 169 (2020). https://doi.org/10.1007/s00894-020-04429-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04429-x

Keywords

Navigation