Skip to main content
Log in

Adenine based molecular junction as biosensor for detection of toxic phosgene gas

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The possibility of adsorption of toxic phosgene gas (COCl2) molecule on one of the nucleobase of DNA—adenine—has been analyzed using the first principle calculations based on density function theory. In accordance with the geometry of the nucleobase, two possible positions have been considered for effective adsorption of gas molecule. The calculations performed on adsorption energies suggest that the gas molecule is able to physisorb at both the considered positions with negligibly small values of charge transfer. The in-depth analysis of electron charge densities depicts that there is no orbital overlapping between the gas molecule and adenine. We observe a significant variation of transport properties of adenine-based molecular junction on adsorption of phosgene molecule while calculation the transport parameters at both the equilibrium as well as non-equilibrium. Also, the variation of HOMO-LUMO gap of adenine molecule on adsorption of phosgene leads to alteration of current and voltage, thus implying that adenine-based sensor can be effectively utilized to sense the presence of phosgene gas in a given environment. Small adsorption energies and recovery time suggest that the rate of desorption of phosgene is very high; thus, the proposed adenine sensor can be effectively used as a highly stable and selective reusable sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Feynman RP (1992) There is plenty of room at the bottom. J Mems 1:60

    Article  Google Scholar 

  2. Tour J, Kozaki M, Seminario JM (1998) Molecular scale electronics: a synthetic/computational approach to digital computing

  3. Fink HW, Schonenberger C (1999). Nature (London) 398:407

    Article  CAS  Google Scholar 

  4. Porath D, Bezryadin A, de Veries S, Dekker C (2000). Nature (London) 403:635

    Article  CAS  Google Scholar 

  5. Randhawa DKK, Bharadwaj LM, Singh ML (2011). Int J Comput Appl 17:8

    Google Scholar 

  6. Simchi H, Esmaeilzadeh M, Hossein Mazidabadi J (2014). Appl Phys 115:044701

    Article  Google Scholar 

  7. Vohra R, Bhat Y, Kaur M, Sawhney RS (2017) Scrutiny of electron transport properties of adenine molecule under dissimilar miller orientations. J Bionanosci 11(5):363–369

    Article  CAS  Google Scholar 

  8. Bhat Y, Vohra R, Kaur M, Sawhney RS (2017) Impact of different metallic electrodes on quantum transport through deoxyribonucleic acid. J Comput Theor Nanosci 14(8):4137–4142

    Article  CAS  Google Scholar 

  9. Vohra R, Sawhney RS (2018) Comparative evaluation of NANO transport properties for DNA nucleobase based molecular junction devices. J Mol Model 24(11):330

    Article  PubMed  Google Scholar 

  10. Vohra R, Sawhney RS (2018) Adenine based molecular biomarker for the diagnosis of Lead and mercury presence in a live sample. J Nanoelectron Optoelectron 13(4):554–561

    Article  CAS  Google Scholar 

  11. Kaisti M (2017) Detection principles of biological and chemical FET sensors. Biosens Bioelectron 98:437–448

    Article  CAS  PubMed  Google Scholar 

  12. Vohra R, Sawhney RS (2018) Envisaging quantum transport phenomenon in a muddled base pair of DNA. Pramana 90(5):58

    Article  Google Scholar 

  13. Definition of adenine from the genetics home reference-National Institutes of Health

  14. Taylor J, Brandbyge M, Stokbro K (2002) Theory of rectification in tour wires: the role of electrode coupling. Phys Rev Lett 89(13):138301

    Article  PubMed  Google Scholar 

  15. Lang ND (1995) Resistance of atomic wires. Phys Rev B Condens Matter Mater Phys 52(5335)

  16. Xue Y, Datta S, Ratner MA (2002) First-principles based matrix Green’s function approach to molecular electronic devices: general formalism. Chem Phys 281(151)

  17. Brandbyge M, Mozos JL, Ordejon P, Taylor J, Stokbro K (2002) Density-functional method for non-equilibrium electron transport. Phys Rev B Condens Matter Mater Phys 65(165401)

  18. Taylor J, Guo H, Wang J (2001) Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B Condens Matter Mater Phys 63(245407)

  19. Atomistic Toolkit Manual, Quantumwise Inc. Atomistix toolkit version 13.8.0, Quantumwise A/S (http://quantumwise.com)

  20. Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Conductance of a molecular junction. Science 278:252–254. https://doi.org/10.1126/science.278.5336.252

    Article  CAS  Google Scholar 

  21. Walia GK, Randhawa DK (2018). Struct Chem 29:257. https://doi.org/10.1007/s11224-017-1025-9

    Article  CAS  Google Scholar 

  22. Kaur J, Kumar R, Vohra R, Sawhney RS (2020) A pursuit to design highly sensitive fullerene-based sensors: adsorption and dissociation phenomenon of toxic sulfur gases on B40 fullerene. J Mol Model 26:17

    Article  CAS  Google Scholar 

  23. Vohra R, Sawhney RS (2018) Contemplating nanometer scale transport characteristics through aromatic molecules based molecular devices. Int J Nanoelectron Mater 11(3):333

    Google Scholar 

  24. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  25. Landauer R (1989) Conductance determined by transmission: probes and quantized constriction resistance. J Phys Condens Matter 1:8099

    Article  Google Scholar 

  26. Heurich J, Cuevas JC, Wenzel W, Schon G (2002) Electrical transport through single-molecule junctions: from molecular orbitals to conduction channels. Phys Rev Lett 88:256803. https://doi.org/10.1103/PhysRevLett.88.256803

    Article  CAS  PubMed  Google Scholar 

  27. Lawson JW, Bauschlieher CW (2006) Transport in molecular junctions with different metallic contacts. Phys Rev B Condens Matter Mater Phys 74:125401. https://doi.org/10.1103/PhysRevB.74.125401

    Article  CAS  Google Scholar 

  28. Datta S (1995) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  29. Kuwabara T, Sugiyama, Yamaguchi, Takahashi (2009) Inverted type bulk-heterojunction organic solar cell using electro-deposited titanium oxide thin films as electron collector electrode. Thin Solid Films 517:3766. https://doi.org/10.1016/j.tsf.2008.12.039

    Article  CAS  Google Scholar 

  30. Paulsson M, Datta S (2003) Thermoelectric effect in molecular electronics. Phys Rev B Condens Matter Mater Phys 67(24):241403. https://doi.org/10.1103/PhysRevB.67.241403

    Article  CAS  Google Scholar 

  31. Beebe JM, Kim B, Gadzuk JW, Frisbie CD, Kushmerick JG (2006) Transition from direct tunneling to field emission in metal-molecule-metal junctions. Phys Rev Lett 97:026801. https://doi.org/10.1103/PhysRevLett.97.026801

    Article  CAS  PubMed  Google Scholar 

  32. Beebe JM, Kim B, Gadzuk JW, Frisbie CD, Kushmerick JG (2008) Measuring relative barrier heights in molecular electronic junctions with transition voltage spectroscopy. ACS Nano 2:827. https://doi.org/10.1021/nn700424u

    Article  CAS  PubMed  Google Scholar 

  33. Yong Y, Cui H, Zhou Q, Su X, Kuang Y, Li X (2017) Adsorption of gas molecules on graphitic GaN sheet and its implications for molecule sensors. RSC Adv 7:51027. https://doi.org/10.1039/c7ra11106a

    Article  CAS  Google Scholar 

  34. Peng S, Cho K, Qi P, Dai H (2004) Ab initio study of CNT NO2 gas sensor. Chem Phys Lett 387:271–276. https://doi.org/10.1016/j.cplett.2004.02.026

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the “Ministry of Electronics and Information Technology,” Government of India, for initiating Visvesvaraya PhD Scheme. The authors would also like to thank Synopsys for their valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Vohra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

(MP4 11,591 kb)

(MP4 9246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vohra, R., Sawhney, R.S., Kaur, J. et al. Adenine based molecular junction as biosensor for detection of toxic phosgene gas. J Mol Model 26, 172 (2020). https://doi.org/10.1007/s00894-020-04427-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04427-z

Keywords

Navigation