Skip to main content
Log in

Comparative investigation on the thermostability, sensitivity, and mechanical performance of RDX/HMX energetic cocrystal and its mixture

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecular mechanics (MM) and molecular dynamics (MD) simulation method were applied to explore the impact of temperature (220–380 K) on the thermostability, sensitivity, and mechanical performance of RDX (1,3,5-trinitro-1,3,5-triazacyco-hexane)/HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) energetic cocrystal and mixture models. The mechanical property, the maximum trigger bond length (\( {L}_{N-{NO}_2} \)), binding energy, and cohesive energy density (CED) of the pure RDX, β-HMX crystal, the cocrystal, and mixture models were acquired and compared. The results manifest that temperature has an important impact on the binding capacity between the components of the cocrystal and mixture. The binding energies decrease as the temperature rises, and the cocrystal has larger values than those of mixture. For all the models, the \( {L}_{N-{NO}_2} \) increases and the CEDs decrease with the rising temperature, implying that the sensitivity of the explosives increases, while the \( {L}_{N-{NO}_2} \) values of the cocrystal are smaller than those of HMX and the CED values are between those of RDX and β-HMX, indicating that the sensitivity has been enhanced through co-crystallization. As the temperature increases, the shear modulus (G), bulk modulus (K), and tensile modulus (E) values of all models have an evident downtrend. Simultaneously, G, K, and E values of the cocrystal model are less than those of RDX and β-HMX, while the K/G ratio and Cauchy pressure (C12–C44) are larger, signifying that co-crystallization can weaken the brittleness and enhance the ductility of the pure crystals. Compared with the mixture, the cocrystal has better ductility and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8

Similar content being viewed by others

References

  1. Bayat Y, Zarandi M, Zarei M, Soleyman R (2014) A novel approach for preparation of CL-20 nanoparticles by microemulsion method. J Mol Liq 193:83–86

    CAS  Google Scholar 

  2. Bayat Y, Zeynali V (2011) Preparation and characterization of nano-CL-20 explosive. J Energ Mater 29:281–291

    CAS  Google Scholar 

  3. Elbeih A, Husarova A, Zeman S (2011) Path to ε-HNIW with reduced impact sensitivity. Cent Eur J Energ Mater 8:173–182

    CAS  Google Scholar 

  4. Guo X, Ouyang G, Liu J, Li Q, Wang L et al (2015) Massive preparation of reduced-sensitivity nano CL-20 and its characterization. J Energ Mater 33:24–33

    CAS  Google Scholar 

  5. Kröber H, Teipel U (2008) Crystallization of insensitive HMX. Propellants, Explos. Pyrotech. 33:33–36

    Google Scholar 

  6. Liu J, Jiang W, Yang Q, Song J, Hao G-z, Li F-s (2014) Study of nano-nitramine explosives: preparation, sensitivity and application. Def Technol 10:184–189

    CAS  Google Scholar 

  7. Ma S, Li Y, Li Y, Luo Y (2016) Research on structures, mechanical properties, and mechanical responses of TKX-50 and TKX-50 based PBX with molecular dynamics. J Mol Model 22:43

    CAS  PubMed  Google Scholar 

  8. Ma Z, Gao B, Wu P, Shi J, Qiao Z et al (2015) Facile, continuous and large-scale production of core–shell HMX@ TATB composites with superior mechanical properties by a spray-drying process. RSC Adv 5:21042–21049

    CAS  Google Scholar 

  9. Nandi AK, Ghosh M, Sutar VB, Pandey RK (2012) Surface coating of cyclotetramethylenetetranitramine (HMX) crystals with the insensitive high explosive 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB). Cent Eur J Energ Mater 9:119–130

    CAS  Google Scholar 

  10. Yu Y, Chen S, Li X, Zhu J, Liang H et al (2016) Molecular dynamics simulations for 5, 5′-bistetrazole-1, 1′-diolate (TKX-50) and its PBXs. RSC Adv 6:20034–20041

    CAS  Google Scholar 

  11. Gao H, Jiang W, Liu J, Hao G, Xiao L et al (2017) Synthesis and characterization of a new co-crystal explosive with high energy and good sensitivity. J Energ Mater 35:490–498

    CAS  Google Scholar 

  12. Ghosh M, Sikder AK, Banerjee S, Gonnade RG (2018) Studies on CL-20/HMX (2:1) Cocrystal: a new preparation method and structural and Thermokinetic analysis. Cryst Growth Des 18:3781–3793

    CAS  Google Scholar 

  13. Song X, Wang Y, Zhao S, Li F (2018) Mechanochemical fabrication and properties of CL-20/RDX nano co/mixed crystals. RSC Adv 8:34126–34135

    CAS  Google Scholar 

  14. Tao J, Jin B, Chu S, Peng R, Shang Y, Tan B (2018) Novel insensitive energetic-cocrystal-based BTO with good comprehensive properties. RSC Adv 8:1784–1790

    CAS  Google Scholar 

  15. Wu J, Zhang J, Li T, Li Z, Zhang T (2015) A novel cocrystal explosive NTO/TZTN with good comprehensive properties. RSC Adv 5:28354–28359

    CAS  Google Scholar 

  16. Xu H, Duan X, Li H, Pei C (2015) A novel high-energetic and good-sensitive cocrystal composed of CL-20 and TATB by a rapid solvent/non-solvent method. RSC Adv 5:95764–95770

    CAS  Google Scholar 

  17. Zhang Z, Li T, Yin L, Yin X, Zhang J (2016) A novel insensitive cocrystal explosive BTO/ATZ: preparation and performance. RSC Adv 6:76075–76083

    CAS  Google Scholar 

  18. Han G, Gou R-j, Zhang S-h, Wu C-l, Zhu S-f (2017) Theoretical investigation into the influence of molar ratio on binding energy, mechanical property and detonation performance of 1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazacyclo octane (HMX)/1-methyl-4, 5-dinitroimidazole (MDNI) cocrystal explosive. Comput Theor Chem 1109:27–35

    CAS  Google Scholar 

  19. Hang G-Y, Yu W-L, Wang T, Wang J-T (2019) Theoretical investigations on structures, stability, energetic performance, sensitivity, and mechanical properties of CL-20/TNT/HMX cocrystal explosives by molecular dynamics simulation. J Mol Model 25:10

    PubMed  Google Scholar 

  20. Bolton O, Matzger AJ (2011) Improved stability and smart-material functionality realized in an energetic cocrystal†. Angew Chem 50:8960–8963

    CAS  Google Scholar 

  21. Li H, Shu Y, Gao S, Chen L, Ma Q, Ju X (2013) Easy methods to study the smart energetic TNT/CL-20 co-crystal. J Mol Model 19:4909–4917

    CAS  PubMed  Google Scholar 

  22. Liu K, Zhang G, Luan J, Chen Z, Su P, Shu Y (2016) Crystal structure, spectrum character and explosive property of a new cocrystal CL-20/DNT. J Mol Struct 1110:91–96

    CAS  Google Scholar 

  23. Liu Y, An C, Luo J, Wang J (2018) High-density HNIW/TNT cocrystal synthesized using a green chemical method. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 74:385–393

    CAS  Google Scholar 

  24. Shen JP, Duan XH, Luo QP, Zhou Y, Bao Q et al (2011) Preparation and characterization of a novel Cocrystal explosive. Cryst Growth Des 11:1759–1765

    CAS  Google Scholar 

  25. Wang Y, Yang Z, Li H, Zhou X, Zhang Q et al (2014) A novel Cocrystal explosive of HNIW with good comprehensive properties. Propellants Explos Pyrotech 39:590–596

    CAS  Google Scholar 

  26. Aldoshin SM, Aliev ZG, Goncharov TK, Milyokhin YM, Shishov NI et al (2014). J Struct Chem 55:327–331

    CAS  Google Scholar 

  27. Anderson SR, Dube P, Krawiec M, Salan J, Ende DJA, Samuels P (2016) Promising CL-20-based energetic material by cocrystallization. Propellants Explos Pyrotech 41:783–788

    CAS  Google Scholar 

  28. Goncharov TK, Aliev ZG, Aldoshin SM, Dashko DV, Eva AAV et al (2015) Preparation, structure, and main properties of bimolecular crystals CL-20—DNP and CL-20—DNG. Russ Chem B 64:366–374

    CAS  Google Scholar 

  29. Xiong S, Chen S, Jin S, Zhang C (2016) Molecular dynamics simulations on dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate/hexanitrohexaazaisowurtzitane cocrystal. RSC Adv 6:4221–4226

    CAS  Google Scholar 

  30. Yang Z, Li H, Zhou X, Zhang C, Huang H et al (2012) Characterization and properties of a novel energetic–energetic cocrystal explosive composed of HNIW and BTF. Cryst Growth Des 12:5155–5158

    CAS  Google Scholar 

  31. Yang Z, Wang H, Ma Y, Huang Q, Zhang J et al (2018) Isomeric cocrystals of CL-20: a promising strategy for development of high-performance explosives. Cryst Growth Des 18:6399–6403

    CAS  Google Scholar 

  32. Chen P, Zhang L, Zhu S, Cheng G (2015) Intermolecular interactions, thermodynamic properties, crystal structure, and detonation performance of CL-20/TEX cocrystal explosive. Can J Chem 93:632–638

    CAS  Google Scholar 

  33. Xiong S, Chen S, Jin S (2017) Molecular dynamic simulations on TKX-50/RDX cocrystal. J Mol Graph Model 74:171–176

    CAS  PubMed  Google Scholar 

  34. Xiong S, Chen S, Jin S, Zhang Z, Zhang Y, Li L (2017) Molecular dynamic simulations on TKX-50/HMX cocrystal. RSC Adv 7:6795–6799

    CAS  Google Scholar 

  35. Zhang X, Chen S, Wu Y, Jin S, Wang X et al (2018) A novel cocrystal composed of CL-20 and an energetic ionic salt. Chem Commun 54:13268–13270

    CAS  Google Scholar 

  36. Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) High power explosive with good sensitivity: a 2:1 cocrystal of CL-20:HMX. Cryst Growth Des 12:4311–4314

    CAS  Google Scholar 

  37. Guo C, Zhang H, Wang X, Xu J, Liu Y et al (2013) Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal. J Mol Struct 1048:267–273

    CAS  Google Scholar 

  38. Lin H, Zhu S, Li H, Peng X (2013) Synthesis, characterization, AIM and NBO analysis of HMX/DMI cocrystal explosive. J Mol Struct 1048:339–348

    CAS  Google Scholar 

  39. Lin H, Zhu S, Zhang L, Peng X, Hongzhen LI (2013) Synthesis and first principles investigation of HMX/NMP Cocrystal explosive. J Energ Mater 31:261–272

    CAS  Google Scholar 

  40. Lin H, Chen J, Zhu S, Li H, Huang Y (2017) Synthesis, characterization, detonation performance, and DFT calculation of HMX/PNO cocrystal explosive. J Energ Mater 35:95–108

    CAS  Google Scholar 

  41. Liu N, Duan B, Lu X, Mo H, Xu M et al (2018) Preparation of CL-20/DNDAP cocrystals by a rapid and continuous spray drying method: an alternative to cocrystal formation. Cryst Eng Comm 20:2060–2067

    CAS  Google Scholar 

  42. Pan B, Dang L, Wang Z, Jiang J, Wei H (2018) Preparation, crystal structure and solutionmediated phase transformation of a novel solid state form of CL-20. Cryst Eng Comm 20:1553–1563

    CAS  Google Scholar 

  43. Landenberger KB, Matzger AJ (2012) Cocrystals of 1,3,5,7-Tetranitro-1,3,5,7-tetrazacyclooctane (HMX). Cryst Growth Des 12:3603–3609

    CAS  Google Scholar 

  44. Lin H, Zhu SG, Li HZ, Peng XH (2013) Synthesis, characterization, AIM and NBO analysis of HMX/DMI cocrystal explosive. J Mol Model 1048:339–348

    CAS  Google Scholar 

  45. Lin H, Chen JF, Zhu SG, Li HZ, Huang Y (2016) Synthesis, characterization, detonation performance, and DFT calculation of HMX/PNO cocrystal explosive. J Energ Mater 35:95–108

    Google Scholar 

  46. Ghosh M, Sikder AK, Banerjee S, Gonnade RG (2018) Studies on CL-20/HMX (2:1) co-crystal: a new preparation method, Structural and Thermo kinetic Analysis. Cry Growth Des 18:3781–3793

    CAS  Google Scholar 

  47. Sun H (1998) COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications-Overview with Details on Alkane and Benzene Compounds. J Phys Chem B 102:7338–7364

    CAS  Google Scholar 

  48. Bunte SW, Sun H (2000) Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the COMPASS force field. J Phys Chem B 104:2477–2489

    CAS  Google Scholar 

  49. Cady HH, Larson AC, Cromer DT (1963) The crystal structure of α-HMX and a refinement of the structure of β-HMX. Acta Crystallogr 16:617–623

    CAS  Google Scholar 

  50. Choi CS, Prince E (1972) The crystal structure of cyclotrimethylenetrinitramine. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 28:2857–2862

    CAS  Google Scholar 

  51. Hang GY, Yu WL, Wang T, Wang JT, Li Z (2017) Theoretical insights into the effects of molar ratios on stabilities, mechanical properties, and detonation performance of CL-20/HMX cocrystal explosives by molecular dynamics simulation. J Mol Model 23:30

    PubMed  Google Scholar 

  52. Hang GY, Yu WL, Wang T, Wang JT, Li Z (2017) Theoretical insights into effects of molar ratios on stabilities, mechanical properties and detonation performance of CL-20/RDX cocrystal explosives by molecular dynamics simulation. J Mol Struct 1141:577–583

    CAS  Google Scholar 

  53. Brooks III CL, Pettitt BM, Karplus M (1985) Structural and energetic effects of truncating long ranged interactions in ionic and polar fluids. J Chem Phys 83:5897–5908

    CAS  Google Scholar 

  54. Ewald PP (1921) Calculation of optic and electrostatic lattice potential. Ann Phys 64:253–287

    Google Scholar 

  55. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384–2393

    CAS  Google Scholar 

  56. Parrinello M, Rahman A (1982) Strain fluctuations and elastic constants. J Chem Phys 76:2662–2666

    CAS  Google Scholar 

  57. Lu Y, Shu Y, Ning L, Lu X, Xu M (2018) Molecular dynamics simulations on ε-CL-20-based PBXs with added GAP and its derivative polymers. RSC Adv 8:4955–4962

    CAS  Google Scholar 

  58. Yan L, Xuedong G, Lianjun W, Guixiang W, Heming X (2011) Substituent effects on the properties related to detonation performance and sensitivity for 2,2′,4,4′,6,6′-hexanitroazobenzene derivatives. J Phys Chem 115:1754–1762

    Google Scholar 

  59. Stefan G (2010) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Google Scholar 

  60. Rice JR (1972). Eng Fract Mech

  61. Swenson RJ (1983) Comments on virial theorems for bounded systems. Am J Phys 51:940–942

    CAS  Google Scholar 

  62. Watt JP, Davies GF, O'Connell RJ (1976) The elastic properties of composite materials. Rev Geophys 14:541–563

    CAS  Google Scholar 

  63. Stevens LL, Eckhardt CJ (2005) The elastic constants and related properties of beta-HMX determined by Brillouin scattering. J Chem Phys 122:251

    Google Scholar 

  64. Sun T, Xiao JJ, Liu Q, Zhaob F, Xiao HM (2014) Comparative study on structure, energetic and mechanical properties of a ε-CL-20/HMX cocrystal and its composite with molecular dynamics simulation. J Mater Chem A 2:13898

    CAS  Google Scholar 

Download references

Funding

This research is supported by the Project from China Academy of Engineering Physics No. ESHT-KY-2015-71 and the Science Challenge Project No. TZ2016001. We also acknowledge the National Natural Science Foundation of China with the grant U1730244, No.11405152, and No.11775195.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Ju.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, YB., Gong, J., Hu, XY. et al. Comparative investigation on the thermostability, sensitivity, and mechanical performance of RDX/HMX energetic cocrystal and its mixture. J Mol Model 26, 176 (2020). https://doi.org/10.1007/s00894-020-04426-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04426-0

Keywords

Navigation