Skip to main content

Advertisement

Log in

A photocatalytic TiO2/graphene bilayer membrane design for water desalination: a molecular dynamic simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The research about finding the effective membrane material is in progress; however, there are pros and cons for each material. Graphene membrane is a single layer of atoms in a two-dimensional hexagonal lattice which achieved high performance in water purification field. Addition of TiO2 to the graphene membrane has been studied for the membrane modifications due to its high stability and photocatalytic performance. In this study, graphene/TiO2 bilayer nanocomposite membrane has been simulated to enhance the mechanical and electronic properties of graphene membrane. Anatase TiO2 (A-TiO2), rutile TiO2 (R-TiO2), and their composite with graphene (G) have been simulated to evaluate the stability of the nanocomposite bilayers in water desalination for higher salt rejection percentage and water permeation. The membrane structure has been created and optimized using the geometry optimization task. The simulation of electronic and mechanical properties has been done by using Material Studio 2019. TiO2 consisting rutile and anatase phases showed a band gap of 2.248 eV, which was reduced to 1.175 eV in combination with graphene. The bilayer composite of TiO2 and graphene achieved higher membrane stability, and the salt rejection was 98% under applied pressure of 100 MPa. The graphene/TiO2 bilayer nanocomposite membranes have been evaluated by simulation for water desalination process using molecular dynamics by ReaxFF software. In comparison with a graphene membrane, the results showed an increment in salt rejection and water permeability under different applied pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Madhura L, Kanchi S, Sabela MI, Singh S, Bisetty K (2017) Membrane technology for water purification. Environ Chem Lett. https://doi.org/10.1007/s10311-017-0699-y

  2. Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12(7):3602–3608. https://doi.org/10.1021/nl3012853

    Article  CAS  PubMed  Google Scholar 

  3. You Y, Sahajwalla V, Yoshimura M, Joshi RK (2016) Graphene and graphene oxide for desalination. Nanoscale 8(1):117–119. https://doi.org/10.1039/c5nr06154g

    Article  CAS  PubMed  Google Scholar 

  4. Min K, Aluru NR (2011) Mechanical properties of graphene under shear deformation. Appl Phys Lett 98(1):2011–2014. https://doi.org/10.1063/1.3534787

    Article  CAS  Google Scholar 

  5. Wang P, Zhan S, Xia Y, Ma S, Zhou Q, Li Y (2017) The fundamental role and mechanism of reduced graphene oxide in rGO/Pt-TiO2 nanocomposite for high-performance photocatalytic water splitting Applied catalysis B: environmental the fundamental role and mechanism of reduced graphene oxide in rGO/Pt-TiO 2 nanocomposite for high-performance photocatalytic water splitting. (December). https://doi.org/10.1016/j.apcatb.2017.02.031

  6. Parvizi-Majidi A (2000) Whiskers and particulates. Comprehensive Composite Materials, pp 175–198. https://doi.org/10.1016/b0-08-042993-9/00045-0

    Chapter  Google Scholar 

  7. Leong SK, Razmjou Chaharmahali A, Wang K, Hapgood K, Zhang X, Wang H (2014) TiO2 based photocatalytic membranes: a review. J. Membr. Sci. 472:167–184. https://doi.org/10.1016/j.memsci.2014.08.016

    Article  CAS  Google Scholar 

  8. Tang H, Prasad K, Sanjinès R, Schmid PE, Lévy F (1994) Electrical and optical properties of TiO2 anatase thin films:2042. https://doi.org/10.1063/1.356306

  9. Devi LG, Murthy BN, Kumar SG (2010) Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light 166:1–6. https://doi.org/10.1016/j.mseb.2009.09.008

  10. Nagaveni K, Hegde MS, Ravishankar N, Subbanna GN (2004) Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity 9(20):2900–2907. https://doi.org/10.1021/la035777v

  11. Zhang R-X, Braeken L, Luis P, Wang X-L, Van der Bruggen B (2013) Novel binding procedure of TiO2 nanoparticles to thin film composite membranes via self-polymerized polydopamine. J Membr Sci 437:179–188

    Article  CAS  Google Scholar 

  12. Xu C, Cui A, Xu Y, Fu X (2013) Graphene oxide–TiO2 composite filtration membranes and their potential application for water purification. Carbon 62:465–471

    Article  CAS  Google Scholar 

  13. Pi J-K, Yang H-C, Wan L-S, Wu J, Xu Z-K (2016) Polypropylene microfiltration membranes modified with TiO2 nanoparticles for surface wettability and antifouling property. J Membr Sci 500:8–15

    Article  CAS  Google Scholar 

  14. Liu J, Van Der Bruggen B (2017) Author’s accepted manuscript construction of TiO 2 @ graphene oxide incorporated antifouling nanofiltration membrane with elevated filtration performance. J Membr Sci. https://doi.org/10.1016/j.memsci.2017.03.040

  15. Aziz NM, Attia AA, Adel HP, Riham RA (2012) Simulation of the band structure of graphene and carbon nanotube. J. Phys. Conf. Ser. 343(1):012076. https://doi.org/10.1088/1742-6596/343/1/012076

    Article  CAS  Google Scholar 

  16. Ojha K, Anjaneyulu O, Ganguli AK (2014) Special section: carbon technology Graphene-based hybrid materials: synthetic approaches and properties. Curr. Sci. 107(3):397–418

    CAS  Google Scholar 

  17. Liu H, Zhu D, Shi H, Shao X (2016) Fabrication of a contamination-free interface between graphene and TiO2 single crystals. ACS Omega 1(2):168–176. https://doi.org/10.1021/acsomega.6b00074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bhanvase, B. A., Shende, T. P., & Sonawane, S. H. (2017). A review on graphene – TiO2 and doped graphene –TiO2 nanocomposite photocatalyst for water and wastewater treatment. 2515(December 2016). https://doi.org/10.1080/21622515.2016.1264489

  19. Xu C, Cui A, Xu Y, Fu X (2013) Graphene oxide – TiO 2 composite filtration membranes and their potential application for water purification. Carbon 62:465–471. https://doi.org/10.1016/j.carbon.2013.06.035

    Article  CAS  Google Scholar 

  20. Cao C, Mukherjee S, Liu J, Wang B, Amirmaleki M, Lu Z, Howe J, Perovic D, Sun X, Singh C, Sun Y, Filleter T (2017) Role of graphene in enhancing the mechanical properties of Tio2/graphene heterostructures. Nanoscale. https://doi.org/10.1039/C7NR03049E

  21. Sun H (1998) Compass: an ab initio force-field optimized for condensed-phase applications - overview with details on alkane and benzene compounds. J Phys Chem B 102(38):7338–7364. https://doi.org/10.1021/jp980939v

    Article  CAS  Google Scholar 

  22. Fereidoon A, Aleaghaee S, Taraghi I (2015) Mechanical properties of hybrid graphene/TiO2 (rutile) nanocomposite: a molecular dynamics simulation. Comput Mater Sci 102:220–227. https://doi.org/10.1016/j.commatsci.2015.02.044

    Article  CAS  Google Scholar 

  23. Senftle TP, Hong S, Islam MM, Kylasa SB, Zheng Y, Shin YK et al (2016) The ReaxFF reactive force-field: development, applications and future directions. Npj Comput Mater 2(September 2015). https://doi.org/10.1038/npjcompumats.2015.11

  24. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14:2717–2744. https://doi.org/10.1088/0953-8984/14/11/301

    Article  CAS  Google Scholar 

  25. Adamo C, Ernzerhof M, Scuseria GE, Adamo C (2000) The meta-GGA functional: thermochemistry with a kinetic energy density dependent exchange-correlation functional. J. Chem. Phys. 2643(2000). https://doi.org/10.1063/1.480838

  26. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  27. Wu Z, Cohen RE (2006) More accurate generalized gradient approximation for solids. Phys Rev B Condens Matter Mater Phys 73(23):2–7. https://doi.org/10.1103/PhysRevB.73.235116

    Article  CAS  Google Scholar 

  28. Lemak AS, Balabaev NK (1994) On the Berendsen thermostat. Mol. Simul. 13(3):177–187. https://doi.org/10.1080/08927029408021981

    Article  CAS  Google Scholar 

  29. Scm.com. Search - Amsterdam modeling suite: making computational chemistry work for you software for chemistry & materials. [online] Available at: https://www.scm.com/search.php?cat=&search=forcefield. Accessed 8 April 2020

  30. Gogoi A, Konch TJ, Raidongia K, Anki Reddy K (2018) Water and salt dynamics in multilayer graphene oxide (GO) membrane: role of lateral sheet dimensions. J Membr Sci 563(June):785–793. https://doi.org/10.1016/j.memsci.2018.06.031

    Article  CAS  Google Scholar 

  31. Dahanayaka M et al (2017) Graphene membranes with nanoslits for seawater desalination via forward osmosis. PCCP 19:30551–30561

    Article  CAS  Google Scholar 

  32. Cohen-tanugi D, Lin L, Grossman C (2016) Multilayer nanoporous graphene membranes for water desalination. Nano Lett 16(2):1027–1033. https://doi.org/10.1021/acs.nanolett.5b04089

    Article  CAS  PubMed  Google Scholar 

  33. Narasimhan TN (2010) Of wetting and osmotic transport. Phys. Today 63(6):60. https://doi.org/10.1063/1.3455260

    Article  Google Scholar 

  34. ASTM-E111-04 (2004) Standard test method for Young’s modulus, tangent modulus, and chord modulus. American Society for Testing Materials, USA http://www.astm.org/cgi-bin/resolver.cgi?E111-17

    Google Scholar 

  35. Chu YC, Degtyar AD, Rokhlin SI (1994) On determination of orthotropic material moduli from ultrasonic velocity data in nonsymmetry planes. J Acoust Soc Am 95(6):3191–3203. https://doi.org/10.1121/1.409983

    Article  Google Scholar 

  36. Jiang DY, Ouyang CY, Liu SQ (2017) The effect of titanium (Ti) doping on hydrogen incorporation in tungsten (W): first-principles calculations. Fusion Eng Des 121:227–234. https://doi.org/10.1016/j.fusengdes.2017.07.019

    Article  CAS  Google Scholar 

  37. Mir M, Ali MN, Sami J, Ansari U (2014) Review of mechanics and applications of auxetic structures. Adv. Mater. Sci. Eng. 2014:1–18. https://doi.org/10.1155/2014/753496

    Article  Google Scholar 

  38. Summerscales J (2000) The bulk modulus of carbon fibers. J Mater Sci Lett 19(1):15–16

    Article  CAS  Google Scholar 

  39. Morawiec A (1994) Review of deterministic methods of calculation of polycrystal elastic constants. Textures and Microstructures:1687–5397. https://doi.org/10.1155/TSM.22.139

  40. Asmatulu R, Waseem S (2019) Electrospun nanofibers for catalyst applications. Synthesis and applications of electrospun nanofibers, pp 153–173. https://doi.org/10.1016/B978-0-12-813914-1.00008-0

    Chapter  Google Scholar 

  41. Subramaniam MN, Goh P, Lau W, Ng B (2019) Chapter 3 - development of nanomaterial-based photocatalytic membrane for organic pollutants removal. In advanced nanomaterials for membrane synthesis and its applications. https://doi.org/10.1016/B978-0-12-814503-6.00003-3

  42. Takahashi I, Payne DJ, Palgrave RG, Egdell RG (2008) High resolution X-ray photoemission study of nitrogen doped TiO2 rutile single crystals. Chem. Phys. Lett. 454:314–317. https://doi.org/10.1016/j.cplett.2008.02.031

    Article  CAS  Google Scholar 

  43. Takahashi I, Payne DJ, Palgrave RG, Egdell RG (2008) High resolution X-ray photoemission study of nitrogen doped TiO2 rutile single crystals. Chem. Phys. Lett. 454:314–317. https://doi.org/10.1016/j.cplett.2008.02.031

    Article  CAS  Google Scholar 

  44. Zeghbroeck, B. Van (2011) Density of states. Principles of semiconductor devices. [online] Available at: https://ecee.colorado.edu/~bart/book/book/chapter2/ch2_4.htm

  45. Ed MH, Mascarenhas A, Francoeur S, Yoon S (2005) Physics of isoelectronic dopants in GaAs. https://doi.org/10.1016/B978-008044502-1/50006-8

  46. Cuscn, D., Cells, P., Regan, B. C. O., & Lenzmann, F. (2004). Charge transport and recombination in a nanoscale interpenetrating network of n-type and p-type semiconductors: transient photocurrent and photovoltage studies of TiO 2 /. 4342–4350

  47. Wisitsoraat A, Tuantranont A, Comini E, Sberveglieri G, Wlodarski W (2009) Characterization of n-type and p-type semiconductor gas sensors based on NiO x doped TiO 2 thin films. Thin Solid Films 517(8):2775–2780. https://doi.org/10.1016/j.tsf.2008.10.090

    Article  CAS  Google Scholar 

  48. Brito A, Archer M (2013) X-ray crystallography. https://doi.org/10.1016/B978-0-444-56351-4.00008-7

  49. Ed MH, Mascarenhas A, Francoeur S, Yoon S (2005) Physics of isoelectronic dopants in GaAs. Dilute nitride semiconductors. https://doi.org/10.1016/B978-008044502-1/50006-8

    Chapter  Google Scholar 

  50. Shusterman GP, Shusterman AJ (1997) Teaching chemistry with electron density models. J. Chem. Educ. 74:7–771. https://doi.org/10.1021/ed074p771

    Article  Google Scholar 

  51. Li Y, Peng S, Jiang F, Lu G, Li S (2007) Effect of doping TiO2 with alkaline-earth metal ions on its photocatalytic activity. J Serb Chem Soc 72(4):393–402. https://doi.org/10.2298/JSC0704393L

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Centre for High Performance Computing (CHPC), South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rokhsareh Akbarzadeh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, Q., Akbarzadeh, R. A photocatalytic TiO2/graphene bilayer membrane design for water desalination: a molecular dynamic simulation. J Mol Model 26, 165 (2020). https://doi.org/10.1007/s00894-020-04422-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04422-4

Keywords

Navigation