Skip to main content
Log in

A DFT study on the geometrical structures, electronic, and spectroscopic properties of inverse sandwich monocyclic boron nanoclusters ConBm (n = 1.2; m = 6–8)

  • Original paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Recent photoelectron spectroscopy and computational studies have shown that boron ring–centered transition metal–doped inverse sandwich complexes prefer planar or quasi-planar structures which could be a potential building blocks for designing better nanosystems with tailored properties. Due to promising technological applications of different boron nanoclusters, we present a study on the structural, electronic, magnetic, and spectroscopic properties of Co-centered inverted sandwich monocyclic boron nanoclusters with pyramidal, CoBn, and bi-pyramidal, Co2Bn (n = 6–8) shapes. The investigations have been carried out on previously reported stable hexa-, hepta-, and octagonal hole containing pyramidal and bi-pyramidal boron clusters by employing density functional theory calculations with B3LYP hybrid exchange-correlation functional. Our calculation suggests that all the global minima structures have stable planar or quasiplanar symmetrical cyclic motif. The structural stability of clusters has been investigated by analyzing binding energy, thermodynamical parameters, vibrational spectra etc. All parameters indicate that the bi-pyramidal structures (Co2B6, Co2B7, and Co2B8) are more stable than both pristine and singly doped boron nanoclusters. On the contrary, the bi-pyramidal cluster is chemically less stable than the pyramidal clusters (except CoB7) which is supported by the ionization potential, electron affinity, energy gap, and global indices calculations. Molecular electrostatic potential surface and HOMO-LUMO analysis have been carried out to understand the thermodynamically stable clusters that arises due to specific inter/intra-molecular interactions. The presence of magnetic element (Co) in the clusters induces ferromagnetic properties which have been found by investigating the magnetic moment, spin density, and DOS spectra analysis. Size and geometry-dependent properties of boron nanoclusters have been observed as evident from the energy gap and optical absorptions analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yadav MK, Sanyal B, Mookerjee A (2009) Structural, electronic and magnetic properties of Cr-doped (ZnTe)12 clusters. J Magn Magn Mater 321:235–240. https://doi.org/10.1016/j.jmmm.2008.08.092

    Article  CAS  Google Scholar 

  2. Tai TB, Nguyen MT (2010) Thermochemical properties, electronic structure and bonding of mixed lithium boron clusters (BnLi, n = 1-8) and their anions. Chem Phys 375:35–45. https://doi.org/10.1016/j.chemphys.2010.07.015

    Article  CAS  Google Scholar 

  3. Yang Z, Xiong SJ (2008) Structures and electronic properties of small FeBn(n=1-10) clusters. J Chem Phys 128. https://doi.org/10.1063/1.2913172

  4. Li W-L, Xie L, Jian T et al (2014) Hexagonal bipyramidal [Ta 2 B 6]−/0 clusters: B 6 rings as structural motifs. Angew Chemie 126:1312–1316. https://doi.org/10.1002/ange.201309469

    Article  Google Scholar 

  5. Yao JG, Wang XW, Wang YX (2008) A theoretical study on structural and electronic properties of Zr-doped B clusters: ZrBn(n = 1-12). Chem Phys 351:1–6. https://doi.org/10.1016/j.chemphys.2008.03.020

    Article  CAS  Google Scholar 

  6. Golikova OA (1979) Boron and boron-based semiconductors. Phys Status Solidi 51:11–40. https://doi.org/10.1002/pssa.2210510102

    Article  CAS  Google Scholar 

  7. Feng XJ, Luo YH (2007) Structure and stability of Al-doped boron clusters by the density-functional theory. J Phys Chem A 111:2420–2425. https://doi.org/10.1021/jp0656429

    Article  CAS  PubMed  Google Scholar 

  8. Boustani I (1997) Systematic ab initio investigation of bare boron clusters:mDetermination of the geometryand electronic structures of (n=2-14). Phys Rev B Condens Matter Mater Phys 55:16426–16438. https://doi.org/10.1103/PhysRevB.55.16426

    Article  CAS  Google Scholar 

  9. King MK (1982) Ignition and combustion of boron particles and clouds. AIAA J 19:294–306. https://doi.org/10.2514/3.62256

    Article  CAS  Google Scholar 

  10. Plesek J (1992) Potential applications of the boron cluster compounds. Chem Rev 92:269–278. https://doi.org/10.1021/cr00010a005

    Article  CAS  Google Scholar 

  11. Thebault J, Pailler R, Bontemps-Moley G et al (1976) Chemical compatibility in boron fiber-titanium composite materials. J Less Common Met 47:221–233. https://doi.org/10.1016/0022-5088(76)90100-4

    Article  CAS  Google Scholar 

  12. Mishima O, Tanaka J, Yamaoka S, Fukunaga O (1987) High-temperature cubic boron nitride P-N junction diode made at high pressure. Science 238(80):181–183. https://doi.org/10.1126/science.238.4824.181

    Article  CAS  PubMed  Google Scholar 

  13. Meinköhn D (1985) The ignition of boron particles. Combust Flame 59:225–232. https://doi.org/10.1016/0010-2180(85)90127-0

    Article  Google Scholar 

  14. Niu J, Rao BK, Jena P (1997) Atomic and electronic structures of neutral and charged boron and boron-rich clusters. J Chem Phys 107:132–140. https://doi.org/10.1063/1.474360

    Article  CAS  Google Scholar 

  15. Chen Q, Tian WJ, Feng LY et al (2017) Planar B38−and B37−clusters with a double-hexagonal vacancy: molecular motifs for borophenes. Nanoscale 9:4550–4557. https://doi.org/10.1039/c7nr00641a

    Article  CAS  PubMed  Google Scholar 

  16. Chen Q, Li WL, Zhao XY et al (2017) B33–and B34–: aromatic planar boron clusters with a hexagonal vacancy. Eur J Inorg Chem 2017:4546–4551. https://doi.org/10.1002/ejic.201700573

    Article  CAS  Google Scholar 

  17. Luo XM, Jian T, Cheng LJ et al (2017) B26−: the smallest planar boron cluster with a hexagonal vacancy and a complicated potential landscape. Chem Phys Lett 683:336–341. https://doi.org/10.1016/j.cplett.2016.12.051

    Article  CAS  Google Scholar 

  18. Li WL, Chen Q, Tian WJ et al (2014) The B35cluster with a double-hexagonal vacancy: a new and more flexible structural motif for borophene. J Am Chem Soc 136:12257–12260. https://doi.org/10.1021/ja507235s

    Article  CAS  PubMed  Google Scholar 

  19. Piazza ZA, Hu HS, Li WL et al (2014) Planar hexagonal B 36 as a potential basis for extended single-atom layer boron sheets. Nat Commun 5. https://doi.org/10.1038/ncomms4113

  20. Huang W, Sergeeva AP, Zhai HJ et al (2010) A concentric planar doubly π-aromatic B19cluster. Nat Chem 2:202–206. https://doi.org/10.1038/nchem.534

    Article  CAS  PubMed  Google Scholar 

  21. Li P, Sun G, Bai J et al (2017) A detailed investigation into the geometric and electronic structures of CoB: Q n (n = 2-10, Q = 0, -1) clusters. New J Chem 41:11208–11214. https://doi.org/10.1039/c7nj02377d

    Article  CAS  Google Scholar 

  22. Alexandrova AN, Boldyrev AI, Zhai HJ et al (2003) Structure and bonding in B6\n- and B6: planarity and antiaromaticity. J Phys Chem A 107:1359–1369. https://doi.org/10.1021/jp0268866

    Article  CAS  Google Scholar 

  23. Zhai HJ, Wang LS, Alexandrova AN et al (2003) Photoelectron spectroscopy and ab initio study of B3- and B4- anions and their neutrals. J Phys Chem A 107:9319–9328. https://doi.org/10.1021/jp0357119

    Article  CAS  Google Scholar 

  24. Zhai H-J, Wang L-S, Alexandrova AN, Boldyrev AI (2002) Electronic structure and chemical bonding of B5- and B5 by photoelectron spectroscopy and ab initio calculations. J Chem Phys 117:7917–7924

    Article  CAS  Google Scholar 

  25. Alexandrova AN, Boldyrev AI, Zhai H-J, Wang L-S (2004) Electronic structure, isomerism, and chemical bonding in B7- and B7. J Phys Chem A 108:3509–3517. https://doi.org/10.1021/jp037341u

    Article  CAS  Google Scholar 

  26. Zhai HJ, Alexandrova AN, Birch KA et al (2003) Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. Angew Chemie Int Ed 42:6004–6008. https://doi.org/10.1002/anie.200351874

    Article  CAS  Google Scholar 

  27. Zhai HJ, Kiran B, Li J, Wang LS (2003) Hydrocarbon analogues of boron clusters planarity, aromaticity and antiaromaticity. Nat Mater 2:827–833. https://doi.org/10.1038/nmat1012

    Article  CAS  PubMed  Google Scholar 

  28. Li QS, Gong LF, Gao ZM (2004) Structures and stabilities of B7, B7+and B7-clusters. Chem Phys Lett 390:220–227. https://doi.org/10.1016/j.cplett.2004.03.079

    Article  CAS  Google Scholar 

  29. Li Q, Zhao Y, Xu W, Li N (2005) Structure and stability of B8 clusters. Int J Quantum Chem 101:219–229. https://doi.org/10.1002/qua.20290

    Article  CAS  Google Scholar 

  30. Oger E, Crawford NRM, Kelting R et al (2007) Boron cluster cations: transition from planar to cylindrical structures. Angew Chemie Int Ed 46:8503–8506. https://doi.org/10.1002/anie.200701915

    Article  CAS  Google Scholar 

  31. Wang YJ, Zhao YF, Li WL et al (2016) Observation and characterization of the smallest borospherene, B28-and B28. J Chem Phys 144. https://doi.org/10.1063/1.4941380

  32. Li HR, Jian T, Li WL et al (2016) Competition between quasi-planar and cage-like structures in the B29-cluster: photoelectron spectroscopy and: ab initio calculations. Phys Chem Chem Phys 18:29147–29155. https://doi.org/10.1039/c6cp05420j

    Article  CAS  PubMed  Google Scholar 

  33. Li Q-S, Gong L-F (2004) Novel pyramidal MB 7 (M = Li, Na, K, Rb, or Cs) species: structure and aromaticity. J Phys Chem A 108:4322–4325. https://doi.org/10.1021/jp049975m

    Article  CAS  Google Scholar 

  34. Li QS, Jin Q (2003) Theoretical study on the aromaticity of the pyramidal MB6 (M = Be, Mg, Ca, and Sr) clusters. J Phys Chem A 107:7869–7873. https://doi.org/10.1021/jp035044j

    Article  CAS  Google Scholar 

  35. Liu X, Zhao G, Guo L et al (2007) Structural, electronic, and magnetic properties of MBn (M=Cr,Mn,Fe,Co,Ni, nÏ7) clusters. Phys Rev A 75:63201. https://doi.org/10.1103/PhysRevA.75.063201

    Article  CAS  Google Scholar 

  36. Pham HT, Nguyen MT (2015) Effects of bimetallic doping on small cyclic and tubular boron clusters: B 7 M 2 and B 14 M 2 structures with M = Fe, Co. Phys Chem Chem Phys 17:17335–17345. https://doi.org/10.1039/C5CP01650A

    Article  CAS  PubMed  Google Scholar 

  37. Zhai HJ, Wang LS, Zubarev DY, Boldyrev AI (2006) Gold apes hydrogen. The structure and bonding in the planar B 7Au 2 and B 7Au 2 clusters. J Phys Chem A 110:1689–1693. https://doi.org/10.1021/jp0559074

    Article  CAS  PubMed  Google Scholar 

  38. Wang JG, Ma L, Liang YH et al (2014) Density functional theory study of transition metals doped B-80 fullerene. J Theor Comput Chem 13:1450050 https://doi.org/Artn1450050\r10.1142/S0219633614500503

    Article  CAS  Google Scholar 

  39. Ruan W, Wu D-L, Luo W-L et al (2014) Na decorated B 6 cluster and its hydrogen storage properties. Chinese Phys B 23:23102. https://doi.org/10.1088/1674-1056/23/2/023102

    Article  CAS  Google Scholar 

  40. Fuentealba P, Stoll H, von Szentpaly L et al (1983) On the reliability of semi-empirical pseudopotentials: simulation of Hartree-Fock and Dirac-Fock results. J Phys B At Mol Phys 16:L323–L328. https://doi.org/10.1088/0022-3700/16/11/001

    Article  CAS  Google Scholar 

  41. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements. Na to Bi J Chem Phys 82:284–298. https://doi.org/10.1063/1.448800

    Article  CAS  Google Scholar 

  42. Frisch JVMJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J et al (2016) Gaussian 16, (Revision B.01). Gaussian Inc., Wallingford

    Google Scholar 

  43. Tsai FC, Chang CC, Liu CL et al (2005) New thiophene-linked conjugated poly(azomethine)s: theoretical electronic structure, synthesis, and properties. Macromolecules 38:1958–1966. https://doi.org/10.1021/ma048112o

    Article  CAS  Google Scholar 

  44. Fabiano E, Della Sala F, Cingolani R (2004) Ab-initio study of singlet and triplet excitation energies in oligothiophenes. Phys Status Solidi C Conf 1:539–542. https://doi.org/10.1002/pssc.200304034

    Article  CAS  Google Scholar 

  45. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310. https://doi.org/10.1063/1.448975

    Article  CAS  Google Scholar 

  46. Cao X, Dolg M (2004) Segmented contraction scheme for small-core actinide pseudopotential basis sets. J Mol Struct THEOCHEM 673:203–209. https://doi.org/10.1016/j.theochem.2003.12.015

    Article  CAS  Google Scholar 

  47. Rad AS, Shabestari SS, Jafari SA et al (2016) N-doped graphene as a nanostructure adsorbent for carbon monoxide: DFT calculations. Mol Phys 114:1756–1762. https://doi.org/10.1080/00268976.2016.1145748

    Article  CAS  Google Scholar 

  48. Zou M, Zhang J, Chen J, Li X (2012) Simulating adsorption of organic pollutants on finite (8,0) single-walled carbon nanotubes in water. Environ Sci Technol 46:8887–8894. https://doi.org/10.1021/es301370f

    Article  CAS  PubMed  Google Scholar 

  49. Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27:734–740. https://doi.org/10.1021/ic00277a030

    Article  CAS  Google Scholar 

  50. Pearson RG (2005) Chemical hardness and density functional theory. J Chem Sci 117:369–377. https://doi.org/10.1007/BF02708340

    Article  CAS  Google Scholar 

  51. Cornard JP, Lapouge C (2006) Absorption spectra of caffeic acid, caffeate and their 1:1 complex with AI(III): density functional theory and time-dependent density functional theory investigations. J Phys Chem A 110:7159–7166. https://doi.org/10.1021/jp060147y

    Article  CAS  PubMed  Google Scholar 

  52. Kato H, Tanaka E (1991) Stabilities of small Benand Bnclusters (4 ≤ n ≤ 8) by vibrational analysis. J Comput Chem 12:1097–1109. https://doi.org/10.1002/jcc.540120907

    Article  CAS  Google Scholar 

  53. Sozbilir M (2002) Turkish chemistry undergraduate students’ misunderstandings of Gibbs free energy. Univ Chem Educ 6:39–89

    Google Scholar 

  54. Bulat FA, Burgess JS, Matis BR et al (2012) Hydrogenation and fluorination of graphene models: analysis via the average local ionization energy. J Phys Chem A 116:8644–8652. https://doi.org/10.1021/jp3053604

    Article  CAS  PubMed  Google Scholar 

  55. Bulat FA, Toro-Labbé A, Brinck T, et al (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. In: Journal of Molecular Modeling. pp 1679–1691

  56. Rad AS, Valipour P, Gholizade A, Mousavinezhad SE (2015) Interaction of SO2 and SO3 on terthiophene (as a model of polythiophene gas sensor): DFT calculations. Chem Phys Lett 639:29–35. https://doi.org/10.1016/j.cplett.2015.08.062

    Article  CAS  Google Scholar 

  57. Spirtovic-Halilovic S, Salihović M, Džudžević-Čančar H et al (2014) DFT study and microbiology of some coumarin-based compounds containing a chalcone moiety. J Serbian Chem Soc 79:435–443. https://doi.org/10.2298/JSC130628077S

    Article  CAS  Google Scholar 

  58. Xu S, Dong R, Lv C et al (2017) Configurations and characteristics of boron and B36clusters. J Mol Model 23:1–5. https://doi.org/10.1007/s00894-017-3377-x

    Article  CAS  Google Scholar 

  59. Sarkar S, Bhattacharjee K, Das GC, Chattopadhyay KK (2014) Self-sacrificial template directed hydrothermal route to kesterite-Cu <inf>2</inf>ZnSnS<inf>4</inf> microspheres and study of their photo response properties. CrystEngComm 16:2634–2644. https://doi.org/10.1039/c3ce42229a

    Article  CAS  Google Scholar 

  60. Sarkar S, Bhattacharjee K, Das GC, Chattopadhyay KK (2014) Self-sacrificial template directed hydrothermal route to kesterite-Cu2ZnSnS4 microspheres and study of their photo response properties. CrystEngComm 16:2634. https://doi.org/10.1039/c3ce42229a

    Article  CAS  Google Scholar 

  61. Fleming JG, Lin SY, El-Kady I et al (2002) All-metallic three-dimensional photonic crytal with a large infrared bandgap. Nature 417:52–55. https://doi.org/10.1038/417052a

    Article  CAS  PubMed  Google Scholar 

  62. Casady JB, Johnson RW (1996) Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid State Electron 39:1409–1422

    Article  Google Scholar 

  63. Greenfield N, Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8:4108–4116. https://doi.org/10.1021/bi00838a031

    Article  CAS  PubMed  Google Scholar 

  64. Xie K, Jia Q, Zhang X et al (2018) Electronic and magnetic properties of stone–Wales defected graphene decorated with the half-metallocene of M (M = Fe, Co, Ni): a first principle study. Nanomaterials 8. https://doi.org/10.3390/nano8070552

  65. Chandiramouli R, Srivastava A, Nagarajan V (2015) NO adsorption studies on silicene nanosheet: DFT investigation. Appl Surf Sci 351:662–672. https://doi.org/10.1016/j.apsusc.2015.05.166

    Article  CAS  Google Scholar 

  66. Islam N, Ghosh DC (2011) The electronegativity and the global hardness are periodic properties of atoms. J Quantum Inf Sci 1:135–141. https://doi.org/10.4236/jqis.2011.13019

    Article  CAS  Google Scholar 

  67. Shokuhi Rad A, Alijantabar Aghouzi S, Motaghedi N et al (2016) Theoretical study of chemisorption of cyanuric fluoride and S-triazine on the surface of Al-doped graphene. Mol Simul 42:1519–1527. https://doi.org/10.1080/08927022.2016.1214956

    Article  CAS  Google Scholar 

Download references

Funding

We thankfully acknowledges the Higher Education Quality Enhancement Program (HEQEP) subproject CP-3415, University Grant Commission (UGC) of Bangladesh, and the World Bank for the financial assistance to set up the Computational Physics (CP) Research Lab in the Department of Physics at Jahangirnagar University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Kamal Hossain.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1469 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamim, S.U.D., Hussain, T., Hossian, M.R. et al. A DFT study on the geometrical structures, electronic, and spectroscopic properties of inverse sandwich monocyclic boron nanoclusters ConBm (n = 1.2; m = 6–8). J Mol Model 26, 153 (2020). https://doi.org/10.1007/s00894-020-04419-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04419-z

Keywords

Navigation