Skip to main content
Log in

Theoretical study of ciprofloxacin antibiotic trapping on graphene or boron nitride oxide nanoflakes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Reactions between the antibacterial fluoroquinolone agent ciprofloxacin (CIP) and organic hydrophilic nanoflakes (graphene oxide and boron nitride oxide) have been studied in aqueous medium using density functional theory (DFT), time-dependent density functional theory (TD-DFT), and molecular dynamics (MD) simulations. We found that CIP molecules in π-π electron donor–acceptor (EDA) reaction preserve their optical properties in water when adsorbed on hydrophilic nanoflakes. Moreover, MD calculations aimed at studying the diffusive translocation of CIP to lipid membrane showed that the choice of the hydrophilic nanovectors is primordial to stabilize the molecule on the cellular membrane and improve cytotoxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine—challenge and perspectives. Angew Chem 48:872–897

    Article  CAS  Google Scholar 

  2. Friberg S, Nyström AM (2016) NANOMEDICINE: will it offer possibilities to overcome multiple drug resistance in cancer? J Nanobiotechnol 14:1–17

    Article  CAS  Google Scholar 

  3. Zielińska-Górska MK, Sawosz E, Górski K, Chwalibog A (2017) Does nanobiotechnology create new tools to combat microorganisms? Nanotechnol Rev 6:171–189

    Article  Google Scholar 

  4. Urbán P, Fernàndez-Busquets X (2014) Nanomedicine against malaria. Curr Med Chem 21:605–629

    Article  PubMed  CAS  Google Scholar 

  5. Hemeg HA (2017) Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine 12:8211–8225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Durgalakshmi D, Balakumar S (2015) Phase separation induced shell thickness variations in electrospun hollow Bioglass 45S5 fiber mats for drug delivery applications. Phys Chem Chem Phys 17:15316–15323

    Article  CAS  PubMed  Google Scholar 

  7. Chen H, Zhang W, Zhu G, Xie J, Chen X (2017) Rethinking cancer nanotheranostics. Nat Rev Mater 2:17024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M et al (2018) Nano-strategies to fight multidrug resistant bacteria—“a battle of the titans”. Front Microbiol 9:1441

    Article  PubMed  PubMed Central  Google Scholar 

  9. LaVan DA, McGuire T, Langer R (2003) Small-scale systems for in vivo drug delivery. Nat Biotechnol 21:1184–1191

    Article  CAS  PubMed  Google Scholar 

  10. Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17:20–37

    Article  CAS  PubMed  Google Scholar 

  11. Khalifi ME, Bentin J, Duverger E, Gharbi T, Boulahdour H, Picaud F (2016) Encapsulation capacity and natural payload delivery of an anticancer drug from boron nitride nanotube. Phys Chem Chem Phys 18:24994–25001

    Article  PubMed  CAS  Google Scholar 

  12. Duverger E, Bentin J, Delabrousse E, Gharbi T, Picaud F (2017) Ab initio study of azomethine derivative cancer drug on boron nitride and graphene nanoflakes. J Nanotechnol Nanomed Nanobiotechnol 4:1–6

    Google Scholar 

  13. Duverger E, Balme S, Bechelany M, Miele P, Picaud F (2019) Natural payload delivery of the doxorubicin anticancer drug from boron nitride oxide nanosheets. Appl Surf Sci 475:666–675

    Article  CAS  Google Scholar 

  14. Fernandez-Moure JS, Evangelopoulos M, Colvill K, Eps JLV, Tasciotti E (2017) Nanoantibiotics: a new paradigm for the treatment of surgical infection. Nanomedecine 12:1319–1334

    Article  CAS  Google Scholar 

  15. Weng Q, Wang B, Wang X, Hanagata N, Li X, Liu D et al (2014) Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery. ACSnano 8:6123–6130

    CAS  Google Scholar 

  16. Wolfson J, Hooper DC (1989) Fluoroquinolone antimicrobial agents. Clin Microbiol Rev 2:378–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fisher LM, Lawrence JM, Josty IC, Hopewell R, Margerrison EEC, Cullen ME (1989) Ciprofloxacin and the fluoroquinolones new concepts on the mechanism of action and resistance. Am J Med 87:S2–S8

    Article  Google Scholar 

  18. Emmerson AM, Jones AM (2003) The quinolones: decades of development and use. J Antimicrob Chemother 51:13–20

    Article  CAS  PubMed  Google Scholar 

  19. Vázquez JL, Merino S, Domenech O, Berlanga M, Viñas M, Montero MT et al (2001) Determination of the partition coefficients of a homologous series of ciprofloxacin: influence of the n − 4 piperazinyl alkylation on the antimicrobial activity. Int J Pharm 220:53–62

    Article  PubMed  Google Scholar 

  20. Cramariuc O, Rog T, Javanainen M, Monticelli L, Polishchuk AV, Vattulainen I (2012) Mechanism for translocation of fluoroquinolones across lipid membranes. Biochim Biophys Acta Biomembr 1818:2563–2571

    Article  CAS  Google Scholar 

  21. Bansal S, Tandon V (2011) Contribution of mutations in DNA gyrase and topoisomerase IV genes to ciprofloxacin resistance in Escherichia coli clinical isolates. Int J Antimicrob Agents 37:253–255

    Article  CAS  PubMed  Google Scholar 

  22. Batt AL, Bruce IB, Aga DS (2006) Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environ Pollut 142:295–302

    Article  CAS  PubMed  Google Scholar 

  23. Ma J, Yang M, Yu F, Zheng J (2015) Water-enhanced removal of ciprofloxacin from water by porous graphene hydrogel. Sci Rep 5:13578 1–10

    Article  PubMed  PubMed Central  Google Scholar 

  24. Singla P, Goel N, Singhal S (2016) Affinity of boron nitride nanomaterials towards antibiotics established by exhaustive experimental and theoretical investigations. Chem Eng J 299:403–414

    Article  CAS  Google Scholar 

  25. Liu D, Lei W, Qin S, Klika KD, Chen Y (2016) Superior adsorption of pharmaceutical molecules by highly porous BN nanosheets. Phys Chem Chem Phys 18:84–88

    Article  CAS  PubMed  Google Scholar 

  26. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:864–871

    Article  Google Scholar 

  27. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:1133–1138

    Article  Google Scholar 

  28. Ordejon P, Artacho E, Soler JM (1996) Self-consistent order-N density-functional calculations for very large systems. Phys Rev B 53:10441–10444

    Article  Google Scholar 

  29. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P et al (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779

    Article  CAS  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  31. Sainsbury T, Satti A, May P, Wang Z, McGovern I, Gun’ko YK et al (2012) Oxygen radical functionalization of boron nitride nanosheets. J Am Chem Soc 134:18758–18771

    Article  CAS  PubMed  Google Scholar 

  32. Lee D, Lee B, Park KH, Ryu HJ, Jeon S, Hong SH (2015) Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide assisted ball milling. Nano Lett 15:1238–1244

    Article  CAS  PubMed  Google Scholar 

  33. Lin Y, Williams TV, Connell JW (2010) Soluble, exfoliated hexagonal boron nitride nanosheets. J Phys Chem Lett 1:277–283

    Article  CAS  Google Scholar 

  34. Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2:581–587

    Article  CAS  PubMed  Google Scholar 

  35. Fan X, Peng W, Li Y, Li X, Wang S, Zhang G et al (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20(4490):3

    Google Scholar 

  36. Yu F, Sun S, Han S, Zheng J, Ma J (2016) Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. Chem Eng J 285:588–595

    Article  CAS  Google Scholar 

  37. Peng X, Hu F, Lam FL-Y, Wang Y, Liu Z, Dai H (2015) Adsorption behavior and mechanisms of ciprofloxacin from aqueous solution by ordered mesoporous carbon and bamboo-based carbon. J Colloid Interface Sci 460:349–360

    Article  CAS  PubMed  Google Scholar 

  38. Andrade X, Strubbe D, Giovannini UD, Larsen AH, Oliveira MJT, Alberdi-Rodriguez J et al (2015) Real-space grids and the octopus code as tools for the development of new simulation approaches for electronic systems. Phys Chem Chem Phys 17:31371–31396

    Article  CAS  PubMed  Google Scholar 

  39. Castro A, Appel H, Oliveira M, Rozzi CA, Andrade X, Lorenzen F et al (2006) Octopus: a tool for the application of time-dependent density functional theory. Phys Status Solidi B 243:2465–2488

    Article  CAS  Google Scholar 

  40. Marques MAL, Castro A, Bertsch GF, Rubio A (2003) Octopus: a first-principles tool for excited Electron-ion dynamics. Comput Phys Commun 151:60–78

    Article  CAS  Google Scholar 

  41. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  42. Henkelman G, Arnaldsson A, Jońsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36:354–360

    Article  Google Scholar 

  43. Mayne CG, Saam J, Schulten K, Tajkhorshid E, Gumbart JC (2013) Rapid parameterization of small molecules using the force field toolkit. J Comput Chem 34:2757–2770

    Article  CAS  PubMed  Google Scholar 

  44. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web- based graphical user Interface for CHARMM. J Comput Chem 29:1859–1865

    Article  CAS  PubMed  Google Scholar 

  45. Best RB, Zhu X, Shim J, Lopes PEM, Mittal J, Feig M et al (2012) Optimization of the additive CHARMM all- atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 dihedral angles. J Chem Theory Comput 8:3257–3273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tantis I, Bousiakou L, Karikas G-A, Lianos P (2014) Photocatalytic and photoelectrocatalytic degradation of the antibacterial agent ciprofloxacin. Photochem Photobiol Sci 14:603–607

    Article  CAS  Google Scholar 

  47. Cazedey ECL, Salgado HRN (2012) Spectrophotometric determination of ciprofloxacin hydrochloride in ophthalmic solution. Adv Anal Chem 2:74–79

    CAS  Google Scholar 

  48. Dewitte B, Dewulf J, Demeestere K, Vyvere VVD, Wispelaere PD, Langenhove HV (2008) Ozonation of ciprofloxacin in water: HRMS identification of reaction products and pathways. Environ Sci Technol 42:4889–4895

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This present work was financially supported by the University of Franche-Comté. Calculations were performed with the supercomputer regional facility Mesocenter of the University of Franche-Comté. This work was also performed using HPC resources from GENCI-IDRIS (Grant 2017-[ A0010810075]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Picaud.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duverger, E., Picaud, F. Theoretical study of ciprofloxacin antibiotic trapping on graphene or boron nitride oxide nanoflakes. J Mol Model 26, 135 (2020). https://doi.org/10.1007/s00894-020-04410-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04410-8

Keywords

Navigation