Skip to main content
Log in

In silico identification of new inhibitors for βeta-2-glycoprotein I as a major antigen in antiphospholipid antibody syndrome

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Beta 2 glycoprotein I (β2GPI) is a major antigen for autoantibodies present in antiphospholipid antibody syndrome (APS). β2GPI is a single polypeptide with five repeated domains and different conformations. The activated J-shaped conformation of β2GPI binds to negatively charged phospholipids in the membrane via the fifth domain and causes blood clotting reactions. We applied a drug repurposing strategy using virtual screening and molecular dynamics to find the best FDA drugs against the fifth domain of β2GPI. In the first phase, FDA drugs that had the most favorable ΔG with the fifth domain of β2GPI were selected by virtual screening. Among these drugs that had the most favorable ΔG, Vorapaxar and Antrafenine were selected for molecular dynamics (MD) simulation studies. MD simulation was performed to evaluate the stability of Vorapaxar and Antrafenine complexes and the effect of the two drugs on protein conformation. Also, MD simulation was done to investigate the effect of Antrafenine and Vorapaxar on the binding of β2GPI to the platelet model membrane. According to the results, Vorapaxar and Antrafenine were bound to the protein with the favorable binding energy (Vorapaxar and Antrafenine binding energies are − 49.641 and − 38.803 kcal/mol, respectively). In this study, it was shown that unlike protein alone and protein in the Antrafenine complex, the protein in the Vorapaxar complex was completely separated from the model membrane after 350 ns. Moreover, Vorapaxar led to more changes in the activated J-shape of β2GPI. Thus, Vorapaxar can be a suitable candidate for further investigations on the treatment of APS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abou-Nassar K, Walker M, Wen SW, Freedman M, Doucette S, Lafleche J, Rodger M (2009) The association between anti-beta2 glycoprotein 1 antibodies and adverse pregnancy outcomes. Blood 114:22–4003

    Article  Google Scholar 

  2. Lim W, Crowther MA, Eikelboom JW (2006) Management of antiphospholipid antibody syndrome: a systematic review. Jama. 295(9):1050–1057. https://doi.org/10.1001/jama.295.9.1050

    Article  CAS  PubMed  Google Scholar 

  3. Islam MA, Khandker SS, Alam F, Kamal MA, Gan SH (2018) Genetic risk factors in thrombotic primary antiphospholipid syndrome: a systematic review with bioinformatic analyses. Autoimmun Rev 17(3):226–243. https://doi.org/10.1016/j.autrev.2017.10.014

    Article  PubMed  Google Scholar 

  4. de Groot PG, Urbanus RT (2012) The significance of autoantibodies against β2-glycoprotein I. Blood 120(2):266–274. https://doi.org/10.1182/blood-2012-03-378646

    Article  CAS  PubMed  Google Scholar 

  5. Ortel TL (2012) Antiphospholipid syndrome: laboratory testing and diagnostic strategies. Am J Hematol 87(S1):S75–S81. https://doi.org/10.1002/ajh.23196

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li MY, Wang RJ, Zhang F, Chi Y (2018) The prokaryotic expression and activity analysis of the fifth domain of β2GPI and its mutants or short peptide fragments. China Biotechnol 38(8):1–9. https://doi.org/10.13523/j.cb.20180801

    Article  Google Scholar 

  7. Ağar Ç, van Os GM, Mörgelin M, Sprenger RR, Marquart JA, Urbanus RT et al (2010) β2-Glycoprotein I can exist in 2 conformations: implications for our understanding of the antiphospholipid syndrome. Blood 116(8):1336–1343. https://doi.org/10.1182/blood-2009-12-260976

    Article  CAS  PubMed  Google Scholar 

  8. Ninivaggi M, Kelchtermans H, Lindhout T, de Laat B (2012) Conformation of beta2glycoprotein I and its effect on coagulation. Thromb Res 130:S33–S36. https://doi.org/10.1016/j.thromres.2012.08.269

    Article  CAS  PubMed  Google Scholar 

  9. Linnemann B (2018) Antiphospholipid syndrome–an update. Vasa. https://doi.org/10.1024/0301-1526/a000723

  10. Koike T (2015) Antiphospholipid syndrome: 30 years and our contribution. Int J Rheum Dis 18(2):233–241. https://doi.org/10.1111/1756-185X.12438

    Article  CAS  PubMed  Google Scholar 

  11. Weaver JC, Krilis SA, Giannakopoulos B (2018) Oxidative post-translational modification of βeta 2-glycoprotein I in the pathophysiology of the anti-phospholipid syndrome. Free Radic Biol Med 125:98–103. https://doi.org/10.1016/j.freeradbiomed.2018.03.048

    Article  CAS  PubMed  Google Scholar 

  12. Buchholz I, Nestler P, Koppen S, Delcea M (2018) Lysine residues control the conformational dynamics of beta 2-glycoprotein I. Phys Chem Chem Phys 20(42):26819–26829. https://doi.org/10.1039/C8CP03234C

    Article  CAS  PubMed  Google Scholar 

  13. Stanisavljevic N, Stojanovich L, Marisavljevic D, Djokovic A, Dopsaj V, Kotur-Stevuljevic J, Lisulov D (2016) Lipid peroxidation as risk factor for endothelial dysfunction in antiphospholipid syndrome patients. Clin Rheumatol 35(10):2485–2493. https://doi.org/10.1007/s10067-016-3369-8

    Article  PubMed  Google Scholar 

  14. Sasaki T, Kobayashi K, Kita S, Kojima K, Hirano H, Shen L, Matsuura E (2017) In vivo distribution of single chain variable fragment (scFv) against atherothrombotic oxidized LDL/β2-glycoprotein I complexes into atherosclerotic plaques of WHHL rabbits: implication for clinical PET imaging. Autoimmun Rev 16(2):159–167. https://doi.org/10.1016/j.autrev.2016.12.007

    Article  CAS  PubMed  Google Scholar 

  15. Hoppe B, Burmester GR, Dörner T (2011) Heparin or aspirin or both in the treatment of recurrent abortions in women with antiphospholipid antibody (syndrome). Curr Opin Rheumatol 23(3):299–304. https://doi.org/10.1097/BOR.0b013e328344c3f7

    Article  CAS  PubMed  Google Scholar 

  16. Lopez-Pedrera C, Aguirre MA, Ruiz-Limon P, Perez-Sanchez C, Jimenez-Gomez Y, Barbarroja N, Cuadrado MJ (2015) Immunotherapy in antiphospholipid syndrome. Int Immunopharmacol 27(2):200–208

    Article  CAS  PubMed  Google Scholar 

  17. Bern MM (2005) Rituximab immunotherapy for the antiphospholipid syndrome. Blood 11:4163. https://doi.org/10.1016/j.intimp.2015.06.006

    Article  CAS  Google Scholar 

  18. Gundabolu K, Bhatt VR, Lunning MA, Baljevic M (2017) Efficacy of direct oral anticoagulants (DOAC) in patients with antiphospholipid antibody syndrome (APS)

    Google Scholar 

  19. Wang F, Chmil C, Pierce F, Ganapathy K, Gump BB, MacKenzie JA, Bendinskas K (2013) Immobilized metal affinity chromatography and human serum proteomics. J Chromatogr B 934:26–33. https://doi.org/10.1016/j.jchromb.2013.06.032

    Article  CAS  Google Scholar 

  20. Cockerill KA, Iverson GM, Jones DS, Linnik MD (2004) Therapeutic potential of toleragens in the management of antiphospholipid syndrome. BioDrugs 18(5):297–305. https://doi.org/10.2165/00063030-200418050-00002

    Article  CAS  PubMed  Google Scholar 

  21. Merrill JT (2004) LJP 1082: a toleragen for Hughes syndrome. Lupus 13(5):335–338. https://doi.org/10.1191/0961203304lu1022oa

    Article  CAS  PubMed  Google Scholar 

  22. Chighizola CB, Ubiali T, Meroni PL (2015) Treatment of thrombotic antiphospholipid syndrome: the rationale of current management—an insight into future approaches. J Immunol Res 2015. https://doi.org/10.1155/2015/951424

  23. Lefkou E, Mamopoulos A, Dagklis T, Vosnakis C, Rousso D, Girardi G (2016) Pravastatin improves pregnancy outcomes in obstetric antiphospholipid syndrome refractory to antithrombotic therapy. J Clin Invest 126(8):2933–2940. https://doi.org/10.1172/JCI86957

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pandjaitan I, Tambunan KL, Atmakusuma TD (2018) Evaluation of anticoagulant use during pregnancy in mothers with antiphospholipid. An Observational Cross-Sectional Study, Syndrome. https://doi.org/10.1182/blood-2018-99-120209

    Book  Google Scholar 

  25. Li J, Chi Y, Liu S, Wang L, Wang R, Han X, Liu Q (2014) Recombinant domain V of β2-glycoprotein I inhibits the formation of atherogenic oxLDL/β2-glycoprotein I complexes. J Clin Immunol 34(6):669–676. https://doi.org/10.1007/s10875-014-0063-y

    Article  CAS  PubMed  Google Scholar 

  26. Klug DM, Gelb MH, Pollastri MP (2016) Repurposing strategies for tropical disease drug discovery. Bioorg Med Chem Lett 26(11):2569–2576. https://doi.org/10.1016/j.bmcl.2016.03.103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Łukasik ZM, Makowski M, Makowska JS (2018) From blood coagulation to innate and adaptive immunity: the role of platelets in the physiology and pathology of autoimmune disorders. Rheumatol Int 38(6):959–974. https://doi.org/10.1007/s00296-018-4001-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bhattacharya D, Nowotny J, Cao R, Cheng J (2016) 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Res 44(W1):W406–W409. https://doi.org/10.1093/nar/gkw336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ (2016) Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc 11(5):905. https://doi.org/10.1038/nprot.2016.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. Chemical Biology. Humana Press, pp 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19

  31. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49(11):3315–3321. https://doi.org/10.1021/jm051197e

    Article  CAS  PubMed  Google Scholar 

  32. Ji X, Hou M (2011) Novel agents for anti-platelet therapy. J Hematol Oncol 4(1):44 https://jhoonline.biomedcentral.com/articles/10.1186/1756-8722-4-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hassan SM, Olivesi A, Fish A, Turner P (1982) A comparison of antrafenine and aspirin on platelet aggregation and frusemide-induced diuresis. Postgrad Med J 58(675):17–19. https://doi.org/10.1136/pgmj.58.675.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Becke AD (1993) Density-functional thermochemistry. III. The Role of Exact Exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  35. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Montgomery Jr J, Vreven T, Kudin K, Burant J. Ja Pople Gaussian Inc. Pittsburgh. (2003) PA. https://gaussian.com

  36. Ingólfsson HI, Melo MN, Van Eerden FJ, Arnarez C, Lopez CA, Wassenaar TA, Periole X, De Vries AH, Tieleman DP, Marrink SJ (2014) Lipid organization of the plasma membrane. J Am Chem Soc 136:14554–14559. https://doi.org/10.1021/ja507832e

    Article  CAS  PubMed  Google Scholar 

  37. - Lhermusier, T.; Chap, H.; Payrastre, B. (2011) Platelet membrane phospholipid asymmetry: from the characterization of a scramblase activity to the identification of an essential protein mutated in Scott syndrome. J Thromb Haemost 9, 1883-1891. 10.1111/j.1538-7836.2011.04478.x

  38. Marcus AJ, Ullman HL, Safier LB (1969) Lipid composition of subcellular particles of human blood platelets. J Lipid Res 10:108–114

    CAS  PubMed  Google Scholar 

  39. Jo S, Lim JB, Klauda JB, Im W (2009) Charmm-Gui membrane builder for mixed bilayers and its application to yeast membranes. Biophys J 97:50–58. https://doi.org/10.1016/j.bpj.2009.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Markwick PRL, de Oliveira CAF, McCammon JA (2011) Enhanced lipid diffusion and mixing in accelerated molecular dynamics. J Chem Theory Comput 7:3199–3207. https://doi.org/10.1021/ct200430c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Berendsen HJC, van der Spoel D, van Drunen R (1995) Gromacs: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56. https://doi.org/10.1016/0010-4655(95)00042-E

    Article  CAS  Google Scholar 

  42. Best RB, Zhu X, Shim J, Lopes PEM, Mittal J, Feig M, MacKerell AD (2012) Optimization of the additive Charmm all-atom protein force field targeting improved sampling of the backbone Φ, Ψ and side-chain Χ (1) and Χ (2) dihedral angles. J Chem Theory Comput 8:3257–3273. https://doi.org/10.1021/ct300400x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  44. Hess B (2008) P-Lincs: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4:116–122. https://doi.org/10.1021/ct700200b

    Article  CAS  PubMed  Google Scholar 

  45. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N· log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  46. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697. https://doi.org/10.1103/PhysRevA.31.1695

    Article  CAS  Google Scholar 

  47. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519. https://doi.org/10.1063/1.447334

    Article  Google Scholar 

  48. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  49. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers Orig Res Biomol 22(12):2577–2637. https://doi.org/10.1002/bip.360221211

    Article  CAS  Google Scholar 

  50. Turppa EMJ (2017) A computational study on the membrane sculpting mechanism of missing-in-metastasis. http://URN.fi/URN:NBN:fi:tty-201701191057

  51. Kumari R, Kumar R, Lynn A, Lynn A (2014) g_mmpbsa a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54:1951–1962. https://doi.org/10.1021/ci500020m

    Article  CAS  PubMed  Google Scholar 

  52. Salmon JE, Mineo C, Giles I, Chamley LW, Meroni PL, Abrahams VM (2017) Mechanisms of antiphospholipid antibody-mediated pregnancy morbidity. Antiphospholipid Syndrome. Springer, Cham, pp 117–143. https://doi.org/10.1007/978-3-319-55442-6_6

    Chapter  Google Scholar 

  53. Zacharias-Millward N, Menter DG, Davis JS, Lichtenberger L, Hawke D, Hawk E, Millward S (2017) Beyond COX-1: the effects of aspirin on platelet biology and potential mechanisms of chemoprevention. Cancer Metastasis Rev 36(2):289–303. https://doi.org/10.1007/s10555-017-9675-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lopez-Pedrera C, Barbarroja N, Collantes E, Aguirre M, Perez-Sanchez C (2019) New biomarkers for atherothrombosis in antiphospholipid syndrome: genomics and epigenetic approaches. Front Immunol 10:764. https://doi.org/10.3389/fimmu.2019.00764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lood C, Tydén H, Gullstrand B, Sturfelt G, Jönsen A, Truedsson L, Bengtsson AA (2014) Platelet activation and anti-phospholipid antibodies collaborate in the activation of the complement system on platelets in systemic lupus erythematosus. PLoS One 9(6):e99386. https://doi.org/10.1371/journal.pone.0099386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rafeedheen R, Bliden KP, Liu F, Tantry US, Gurbel PA (2015) Novel antiplatelet agents in cardiovascular medicine. Curr Treat Opt Cardiovasc Med 17(6):23. https://doi.org/10.1007/s11936-015-0383-0

    Article  Google Scholar 

  57. Xu XR, Carrim N, Neves MAD, McKeown T, Stratton TW, Coelho RMP, Li BX (2016) Platelets and platelet adhesion molecules: novel mechanisms of thrombosis and anti-thrombotic therapies. Thromb J 14(1):29. https://doi.org/10.1186/s12959-016-0100-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. López-Pedrera C, Aguirre MA, Buendía P, Barbarroja N, Ruiz-Limón P, Collantes-Estevez E, Cuadrado MJ (2010) Differential expression of protease-activated receptors in monocytes from patients with primary antiphospholipid syndrome. Arthritis Rheum 62(3):869–877 10.1002/art.27299

    Article  CAS  PubMed  Google Scholar 

  59. Xie H, Kong X, Zhou H, Xie Y, Sheng L, Wang T et al (2015) TLR4 is involved in the pathogenic effects observed in a murine model of antiphospholipid syndrome. Clin Immunol 160(2):198–210. https://doi.org/10.1016/j.clim.2015.05.017

    Article  CAS  PubMed  Google Scholar 

  60. Laplante P, Fuentes R, Salem D, Subang R, Gillis MA, Hachem A, Merhi Y (2016) Anti-phospholipid antibody-mediated effects in an arterial model of thrombosis are dependent on toll-like receptor 4. Lupus. 25(2):162–176. https://doi.org/10.1177/0961203315603146

    Article  CAS  PubMed  Google Scholar 

  61. Zali H, Golchin A, Farahani M, Yazdani M, Dabbagh A (2019) FDA approved drugs repurposing of toll-like receptor4 (TLR4) candidate for neuropathy. Iranian J Pharm Res 18(3):1639–1647. https://doi.org/10.22037/ijpr.2019.2394

    Article  CAS  Google Scholar 

  62. Shen L, Azmi NU, Tan XW, Yasuda S, Wahyuningsih AT, Inagaki J, Matsuura E (2019) Mutants of β2-glycoprotein I: their features and potent applications. Best Pract Res Clin Rheumatol 32 (4:572–590. https://doi.org/10.1016/j.berh.2019.01.007

    Article  Google Scholar 

  63. Sorice M, Misasi R (2018) Different domains of β 2-glycoprotein I play a role in autoimmune pathogenesis. Cell Mol Immunol. https://doi.org/10.1038/s41423-018-0060

  64. Meroni PL (2016) Anti-beta-2 glycoprotein I epitope specificity: from experimental models to diagnostic tools. Lupus 25(8):905–910. https://doi.org/10.1177/0961203316641772

    Article  CAS  PubMed  Google Scholar 

  65. Ho Y, Ahuja K, Körner H, Adams M (2016) β2GP1, Anti-β2GP1 antibodies and platelets: key players in the antiphospholipid syndrome. Antibodies. 5(2):12. https://doi.org/10.3390/antib5020012

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are very grateful to all those who helped us with this project. We would especially like to thank Mohsen Yazdani (Ph.D. Student of IBB).

Author information

Authors and Affiliations

Authors

Contributions

S Mahdian collected and interpreted the data and prepared the manuscript. M Zarab trained the methods and participated in data analysis. A Moini contributed to conception and design. M Movahedi revised the manuscript and contributed to design. M Shahhoseini contributed to the design and revision of the manuscript.

Corresponding authors

Correspondence to Monireh Movahedi or Maryam Shahhoseini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 5198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdian, S., Zarrabi, M., Moini, A. et al. In silico identification of new inhibitors for βeta-2-glycoprotein I as a major antigen in antiphospholipid antibody syndrome. J Mol Model 26, 156 (2020). https://doi.org/10.1007/s00894-020-04406-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04406-4

Keywords

Navigation