Skip to main content

Advertisement

Log in

Druggability and drug-likeness concepts in drug design: are biomodelling and predictive tools having their say?

  • Review
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The drug discovery process typically involves target identification and design of suitable drug molecules against these targets. Despite decades of experimental investigations in the drug discovery domain, about 96% overall failure rate has been recorded in drug development due to the “undruggability” of various identified disease targets, in addition to other challenges. Likewise, the high attrition rate of drug candidates in the drug discovery process has also become an enormous challenge for the pharmaceutical industry. To alleviate this negative outlook, new trends in drug discovery have emerged. By drifting away from experimental research methods, computational tools and big data are becoming valuable in the prediction of biological target druggability and the drug-likeness of potential therapeutic agents. These tools have proven to be useful in saving time and reducing research costs. As with any emerging technique, however, controversial opinions have been presented regarding the validation of predictive computational tools. To address the challenges associated with these varying opinions, this review attempts to highlight the principles of druggability and drug-likeness and their recent advancements in the drug discovery field. Herein, we present the different computational tools and their reliability of predictive analysis in the drug discovery domain. We believe that this report would serve as a comprehensive guide towards computational-oriented drug discovery research.

Highlights of methods for assessing the druggability of biological targets

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dang CV, Reddy EP, Shokat KM, Soucek L (2017) Drugging the “undruggable” cancer targets. Nat Rev Cancer 17(8):502–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Galdeano C (2017) Drugging the undruggable: targeting challenging E3 ligases for personalized medicine. Future Med Chem 9(4):347–350

    Article  CAS  PubMed  Google Scholar 

  3. Zhang ZY (2017) Drugging the undruggable: therapeutic potential of targeting protein tyrosine phosphatases. Acc Chem Res 50(1):122–129

    Article  CAS  PubMed  Google Scholar 

  4. Machado D, Girardini M, Viveiros M, Pieroni M (2018) Challenging the drug-likeness dogma for new drug discovery in tuberculosis. Front Microbiol 9:1367

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sakharkar M, Sakharkar K (2007) Targetability of human disease genes. Curr Drug Discov Technol 4:48–58

    Article  CAS  PubMed  Google Scholar 

  6. Taboureau O, Nielsen S, Audouze K (2011) ChemProt: a disease chemical biology database. Nucleic Acids Res 39:D367–D372

    Article  CAS  PubMed  Google Scholar 

  7. Dixon S, Stockwell B (2009) Identifying druggable disease-modifying gene products. Curr Opin Chem Biol 13:549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scannell J, Blanckley A, Boldon H et al (2012) Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov 11:191–200

    Article  CAS  PubMed  Google Scholar 

  9. Hingorani A, Kuan V, Finan C et al (2019) Improving the odds of drug development success through human genomics: modelling study. Sci Rep 9:18911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hay M, Thomas D, Craighead J, Economides C, Rosenthal J (2014) Clinical development success rates for investigational drugs. Nat Biotechnol 32:40–51

    Article  CAS  PubMed  Google Scholar 

  11. Schmidtke P, Barril X (2010) Understanding and predicting druggability. A high-throughput method for detection of drug binding sites. J Med Chem 53(15):5858–5867

    Article  CAS  PubMed  Google Scholar 

  12. Vistoli G, Pedretti A, Testa B (2008) Assessing drug-likeness - what are we missing? Drug Discov Today 13(7–8):285–294

    Article  CAS  PubMed  Google Scholar 

  13. Kozakov D, Hall DR, Napoleon RL, Yueh C, Whitty A, Vajda S (2015) New frontiers in druggability. J Med Chem 58(23):9063–9088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oprea TI, Bologa CG, Brunak S, Campbell A, Gan GN, Gaulton A et al (2018) Unexplored therapeutic opportunities in the human genome. Nat Rev Drug Discov 7:317–332

    Article  CAS  Google Scholar 

  15. Finan C, Gaulton A, Kruger FA, Lumbers RT, Shah T, Engmann J et al (2017) The druggable genome and support for target identification and validation in drug development. Sci Transl Med 9(383):eaag1166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1(9):727–730

    Article  CAS  PubMed  Google Scholar 

  17. Cheng AC, Coleman RG, Smyth KT, Cao Q, Soulard P, Caffrey DR et al (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol 25(1):71–75

    Article  PubMed  CAS  Google Scholar 

  18. Egner U, Hillig RC (2008) A structural biology view of target druggability. Expert Opin Drug Discovery 3(4):391–401

    Article  CAS  Google Scholar 

  19. Sheridan RP, Maiorov VN, Holloway MK, Cornell WD, Gao YD (2010) Drug-like density: a method of quantifying the “bindability” of a protein target based on a very large set of pockets and drug-like ligands from the protein data bank. J Chem Inf Model 50(11):2029–2040

    Article  CAS  PubMed  Google Scholar 

  20. Rathi PC, Ludlow RF, Hall RJ, Murray CW, Mortenson PN, Verdonk ML (2017) Predicting “hot” and “warm” spots for fragment binding. J Med Chem 60(9):4036–4046

    Article  CAS  PubMed  Google Scholar 

  21. Hajduk PJ, Huth JR, Fesik SW (2005) Druggability indices for protein targets derived from NMr-based screening data. J Med Chem 48(7):2518–2525

    Article  CAS  PubMed  Google Scholar 

  22. Seco J, Luque FJ, Barril X (2009) Binding site detection and druggability index from first principles. J Med Chem 52(8):2363–2371

    Article  CAS  PubMed  Google Scholar 

  23. Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49(2):377–389

    Article  CAS  PubMed  Google Scholar 

  24. Hajduk PJ, Huth JR, Tse C (2005) Predicting protein druggability. Drug Discov Today 10(23–24):1675–1682

    Article  CAS  PubMed  Google Scholar 

  25. Krasowski A, Muthas D, Sarkar A, Schmitt S, Brenk R (2011) DrugPred: a structure-based approach to predict protein druggability developed using an extensive nonredundant data set. J Chem Inf Model 51(11):2829–2842

    Article  CAS  PubMed  Google Scholar 

  26. Volkamer A, Kuhn D, Rippmann F, Rarey M (2012) Dogsitescorer: a web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics. 28(15):2074–2075

    Article  CAS  PubMed  Google Scholar 

  27. Perola E, Herman L, Weiss J (2012) Development of a rule-based method for the assessment of protein druggability. J Chem Inf Model 2(4):1027–1038

    Article  CAS  Google Scholar 

  28. Walters W, Ajay A, Murcko M (1999) Recognizing molecules with drug-like properties. Curr Opin Chem Biol 3(4):384–387

    Article  CAS  PubMed  Google Scholar 

  29. Walters W, Stahl M, Murcko M (1998) Virtual screening – an overview. Drug Discov Today 3:160–178

    Article  CAS  Google Scholar 

  30. Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL (2012) Quantifying the chemical beauty of drugs. Nat Chem 4:90–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oprea TI (2000) Property distribution of drug-related chemical databases. J Comput Aided Mol Des 14(3):251–264

    Article  CAS  PubMed  Google Scholar 

  32. Leeson PD, Springthorpe B (2007) The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 6(11):881–890

    Article  CAS  PubMed  Google Scholar 

  33. Katsila T, Spyroulias GA, Patrinos GP, Matsoukas MT (2016) Computational approaches in target identification and drug discovery. Comput Struct Biotechnol J 14(1):177–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barril X (2013) Druggability predictions: methods, limitations, and applications. Wiley Interdiscip Rev Comput Mol Sci 3(4):327–338

    Article  CAS  Google Scholar 

  35. Cheng T, Hao M, Takeda T, Bryant SH, Wang Y (2017) Large-scale prediction of drug-target interaction: a data-centric review. AAPS J 19(5):1264–1275

    Article  CAS  PubMed  Google Scholar 

  36. Neal KB, Mahmoud ES (2017) Can we rely on computational predictions to correctly identify ligand binding sites on novel protein drug targets? Assessment of binding site prediction methods and a protocol for validation of predicted binding sites. Cell Biochem Biophys 75(1):15–23

    Article  CAS  Google Scholar 

  37. Sun T, Lai L, Pei J (2018) Analysis of protein features and machine learning algorithms for prediction of druggable proteins. Quant Biol 6(4):334–343

    Article  CAS  Google Scholar 

  38. Li YH, Yu CY, Li XX, Zhang P, Tang J, Yang Q et al (2018) Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res 46(D1):D1121–D1127

    Article  CAS  PubMed  Google Scholar 

  39. Jiang Q, Wang J, Wu X, Ma R, Zhang T, Jin S et al (2015) LncRNA2Target: a database for differentially expressed genes after IncRNA knockdown or overexpression. Nucleic Acids Res 43(D1):D193–D196

    Article  CAS  PubMed  Google Scholar 

  40. Griffiths-Jones S (2010) MiRBase: MicroRNA sequences and annotation. Curr Protoc Bioinformatics 34(29):1291–12910

    Google Scholar 

  41. Kandoi G, Acencio ML, Lemke N (2015) Prediction of druggable proteins using machine learning and systems biology: a mini-review. Front Physiol 6(9):54–65

    Google Scholar 

  42. Wyatt PG, Gilbert IH, Read KD, Fairlamb AH (2011) Target validation: linking target and chemical properties to desired product profile. Curr Top Med Chem 11(10):1275–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fauman E, Rai B, Huang E (2011) Structure-based druggability assessment—identifying suitable targets for small molecule therapeutics. Curr Opin Chem Biol 15(4):463–468

    Article  CAS  PubMed  Google Scholar 

  44. Huang B (2009) MetaPocket: a meta approach to improve protein ligand binding site prediction. OMICS 13(4):325–330 [Internet]. Available from: http://www.liebertonline.com/doi/abs/10.1089/omi.2009.0045

    Article  CAS  PubMed  Google Scholar 

  45. Hussein HA, Borrel A, Geneix C, Petitjean M, Regad L, Camproux AC (2015) PockDrug-server: a new web server for predicting pocket druggability on holo and apo proteins. Nucleic Acids Res 43(W1):W436–W442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hernandez M, Ghersi D, Sanchez R (2009) SITEHOUND-web: a server for ligand binding site identification in protein structures. Nucleic Acids Res 37:413–416

    Article  CAS  Google Scholar 

  47. Koscielny G, An P, Carvalho-Silva D, Cham JA, Fumis L, Gasparyan R et al (2017) Open targets: a platform for therapeutic target identification and validation. Nucleic Acids Res 45(D1):D985–D994

    Article  CAS  PubMed  Google Scholar 

  48. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35(D4):198–201

    Article  Google Scholar 

  49. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S et al (2019) PubChem 2019 update: improved access to chemical data. Nucleic Acids Res 47(D1):D1102–D1109

    Article  PubMed  Google Scholar 

  50. Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V (2014) SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 42(W1):32–38

    Article  CAS  Google Scholar 

  51. Wang L, Ma C, Wipf P, Liu H, Su W, Xie X-Q (2013) TargetHunter: An in silico target identification tool for predicting therapeutic potential of small organic molecules based on Chemogenomic database. AAPS J 15(2):395–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Harding SD, Sharman JL, Faccenda E, Southan C, Pawson AJ, Ireland S et al (2017) The IUPHAR/BPS guide to pharmacology In 2018: updates and expansion to encompass the new guide to immunopharmacology. Nucleic Acids Res 46(D1):D1091–D1106

    Article  PubMed Central  CAS  Google Scholar 

  53. Bethesda (MD) (1988) National Library of Medicine (US). National Center for Biotechnology Information (NCBI). Accessed [11/03/2018]

  54. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The Protein Data Bank 28(1):235–42

  55. Loving KA, Lin A, Cheng AC (2014) Structure-based druggability assessment of the mammalian structural proteome with inclusion of light protein flexibility. PLoS Comput Biol 10(7):321–329

    Article  CAS  Google Scholar 

  56. Edfeldt F, Folmer R, Breeze A (2011) Fragment screening to predict druggability (ligandability) and lead discovery success. Drug Discov Today 16(7–8):284–287

    Article  CAS  PubMed  Google Scholar 

  57. Ursu O, Holmes J, Bologa CG, Yang JJ, Mathias SL, Stathias V et al (2019) DrugCentral 2018: An update. Nucleic Acids Res 47(D1):D963–D970

    Article  CAS  PubMed  Google Scholar 

  58. Tse T, Fain KM, Zarin DA (2018) How to avoid common problems when using CliicalTrials.gov in research. Bmj. 361(4):1452–1459

    Article  Google Scholar 

  59. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46(D1):D1074–D1082

    Article  CAS  PubMed  Google Scholar 

  60. Laskowski R (1995) SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph 13:323–330

    Article  CAS  PubMed  Google Scholar 

  61. Brady G, Stouten P (2000) Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des 14:383–401

    Article  CAS  PubMed  Google Scholar 

  62. Huang B, Schroeder M (2006) LIGSITEcsc: predicting ligand binding sites using the connolly surface and degree of conservation. BMC Struct Biol 6:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Laurie A, Jackson R (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics. 21(9):1908–1916

    Article  CAS  PubMed  Google Scholar 

  64. Leis S, Schneider S, Zacharias M (2010) In Silico prediction of binding sites on proteins. Curr Med Chem 17(15):1550–1562

    Article  CAS  PubMed  Google Scholar 

  65. Kerns E, Di L (2008) Drug-like properties: concepts, structure design and methods, vol 552. Academic Press, Burlington

    Google Scholar 

  66. Schneider G Prediction of Drug-Like Properties. Madame Curie Bioscience Database. Landes Bioscience, Austin

  67. Lipinski C, Dominy B, Feeney P (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  68. Sadowski J, Kubinyi H (1998) A scoring scheme for discriminating between drugs and nondrugs. J Med Chem 41:3325–3329

    Article  CAS  PubMed  Google Scholar 

  69. Byvatov E, Fechner U, Sadowski J, Schneider G (2003) Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J Chem Inf Comput Sci 43:1882–1889

    Article  CAS  PubMed  Google Scholar 

  70. Takaoka Y, Endo Y, Yamanobe S, Kakinuma H, Okubo T, Shimazaki Y et al (2003) Development of a method for evaluating drug-likeness and ease of synthesis using a data set in which compounds are assigned scores based on chemists’ intuition. J Chem Inf Comput Sci 43:1269–1275

    Article  CAS  PubMed  Google Scholar 

  71. Ajay A, Walters W, Murcko M (1998) Can we learn to distinguish between “drug-like” and “nondrug-like” molecules? J Med Chem 41:3314–3324

    Article  CAS  PubMed  Google Scholar 

  72. Wagener M, van Geerestein V (2000) Potential drugs and nondrugs: prediction and identification of important structural features. J Chem Inf Comput Sci 40:280–292

    Article  CAS  PubMed  Google Scholar 

  73. Schneider N, Jaeckels C, Andres C, Hutter M (2008) Gradual in silico filtering for druglike substances. J Chem Inf Model 48:613–628

    Article  CAS  PubMed  Google Scholar 

  74. Zernov V, Balakin K, Ivaschenko A, Savchuk N, Pletnev I (2003) Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions. J Chem Inf Model 43:2048–2056

    CAS  Google Scholar 

  75. Gillet V, Khatib W, Willett P, Fleming P, Green D (2002) Combinatorial library design using a multiobjective genetic algorithm. J Chem Inf Comput Sci 42:375–385

    Article  CAS  PubMed  Google Scholar 

  76. Gillet V, Willett P, Bradshaw J (1998) Identification of biological activity profiles using substructural analysis and genetic algorithms. J Chem Inf Comput Sci 38:165–179

    Article  CAS  PubMed  Google Scholar 

  77. Feher M, Schmidt J (2003) Property distribution: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci 43:218–227

    Article  CAS  PubMed  Google Scholar 

  78. Rowland M, Peck C, Tucker G (2011) Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol 51:45–73

    Article  CAS  PubMed  Google Scholar 

  79. Gabrielsson J, Green A (2009) Quantitative pharmacology or pharmacokinetic pharmacodynamic integration should be a vital component in integrative pharmacology. J Pharmacol Exp Ther 331:767–774

    Article  CAS  PubMed  Google Scholar 

  80. Wager T, Hou X, Villalobos A (2010) Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem Neurosci 1:435–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li D, Kerns E, Carter G (2009) Drug-like property concepts in pharmaceutical design. Curr Pharm Des 15:2184–2194

    Article  Google Scholar 

  82. Veber D, Johnson S, Cheng H, Smith B, Ward K, Kopple K (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  PubMed  Google Scholar 

  83. Waring M (2009) Defining optimum lipophilicity and molecular weight ranges for drug candidates—molecular weight dependent lower logD limits based on permeability. Bioorg Med Chem Lett 19:2844–2851

    Article  CAS  PubMed  Google Scholar 

  84. Johnson T, Dress K, Edwards M (2009) Using the golden triangle to optimize clearance and oral absorption. Bioorg Med Chem Lett 19:5560–5564

    Article  CAS  PubMed  Google Scholar 

  85. Lipinski C (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44(1):235–249

    Article  CAS  PubMed  Google Scholar 

  86. Lipinski CA (2016) Rule of five in 2015 and beyond: target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv Drug Deliv Rev 101:34–41

    Article  CAS  PubMed  Google Scholar 

  87. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development setting. Adv Drug Deliv Rev 64:4–17

    Article  Google Scholar 

  88. Kadam R, Roy N (2007) Recent trends in drug-likeness prediction: a comprehensive review of in silico methods. Indian J Pharm Sci 69(5):609–615

    Article  CAS  Google Scholar 

  89. Bhal S, Kassam K, Peirson I, Pearl G (2007) The rule of five revisited: applying log D in place of log P in drug-likeness filters. Mol Pharm 4:556–560

    Article  CAS  PubMed  Google Scholar 

  90. Murphy RB, Philipp DM, Friesner RA (2000) A mixed quantum mechanics/molecular mechanics (QM/MM) method for large-scale modeling of chemistry in protein environments. J Comput Chem 21(16):1442–1457

    Article  CAS  Google Scholar 

  91. Clark D, Pickett S (2000) Computational methods for the prediction of “drug-likeness.”. Drug Discov Today 5(2):49–58

    Article  CAS  PubMed  Google Scholar 

  92. Lewis R, Mason J, McLay I (1997) Similarity measures for rational set selection and analysis of combinatorial libraries: the diverse property-derived (DPD) approach. J Chem Inf Comput Sci 37:599–614

    Article  CAS  PubMed  Google Scholar 

  93. Rishton G (1997) Reactive compounds and in vitro false positives in HTS. Drug Discov Today 2:382–384

    Article  CAS  Google Scholar 

  94. Bioinformatics SI of Click2Drug (2013) p 1–10

  95. Polinsky A (1999) Combichem and chemoinformatics. Curr Opin Drug Discov Devel 2:197–203

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate the College of Health Sciences, University of KwaZulu-Natal for financial and infrastructural support, while we also thank the Center for High-Performance Computing (CHPC, www.chpc.ac.za) Cape-Town, South Africa, for providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud E. Soliman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agoni, C., Olotu, F.A., Ramharack, P. et al. Druggability and drug-likeness concepts in drug design: are biomodelling and predictive tools having their say?. J Mol Model 26, 120 (2020). https://doi.org/10.1007/s00894-020-04385-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04385-6

Keywords

Navigation