Skip to main content
Log in

Towards an unified chemical model of secondary bonding

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The concept of secondary bond covers a wide range of non-covalent interactions involving an acceptor (or electrophilic) molecule and an electron donor (or nucleophilic) one. It involves triel, tetrel, pnictogen, chalcogen, halogen, and aerogen bonds as well as hydrogen bonds. Such interactions yield complexes in which the internuclear distance of the electrophilic and nucleophilic centers is intermediate between the sums of the covalent and van der Waals radii of these atoms. These complexes can be considered as precursors of hypothetical nucleophilic substitution or addition reactions. As a consequence of the least motion principle, in the complex, the arrangement of the ligands around the electrophilic center should look like that of the hypothetical transition state or addition product. In a same fashion, the geometry around the nucleophilic center is determined by the location of the lone pair or of the bond involved in the interaction. In this picture of secondary bonding, the structure of the valence shell of the electrophilic atoms determines the geometry of the complex rather than the group to which belongs the elemental atom. The reorganization of the complexes in terms of the arrangement of the bonding and non-bonding electronic domains around the electrophilic center enables to rationalize the geometries in a systematic fashion. A set of VSEPR inspired rules enabling the building up of secondary bonded isomers are proposed and checked by quantum chemical calculations performed on representative test systems of the AX4−nEn type.

An example of secondary interaction: FClO\(^{...}\textit {FCH}_{3}\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Electronic domains can be defined as a region in which there is a high probability of finding an opposite spin pair or a single electron in the case of open-shell systems. This definition is consistent with the mathematical definition of domain: subset MA of the manifold M such as any two points belonging to MA can be connected by a path totally contained in MA; for example, in \(\mathbb {R}^{3}\), a volume enclosed by an isosurface is a domain.

References

  1. Becke AD, Edgecombe KE (1990) A simple mesure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  2. Silvi B, Latajka Z, Ratajczak H (1993) Pseudopotential periodic Hartree-Fock investigation of potassium dihydrogen phosphate. Ferroelectrics 150:303–311

    Article  Google Scholar 

  3. Bouteiller Y, Desfrançois C, Schermann JP, Latajka Z, Silvi B (1998) Calculation of the electronic affinity and vertical detachment energy of the water dimer complex using the density functional theory. J Chem Phys 108:7967–7992

    Article  CAS  Google Scholar 

  4. Berski S, Silvi B, Latajka Z, Leszczynski J (1999) Bonding in hypohalous acids HOX (X=F, Cl, Br and I) from the topological analysis of the electron localization function (ELF). J Chem Phys 111:2542–2555

    Article  CAS  Google Scholar 

  5. Silvi B, Wieczorek R, Latajka Z, Alikhani ME, Dkhissi A, Bouteiller Y (1999) Critical analysis of the calculated frequency shifts of hydrogen-bonded complexes. J Chem Phys 111:6671–6678

    Article  CAS  Google Scholar 

  6. Fuster F, Silvi B, Berski S, Latajka Z (2000) Topological aspects of protonation and hydrogen bonding: the dihydrogen bond case. J Mol Struct 555:75–84

    Article  CAS  Google Scholar 

  7. Berski S, Silvi B, Lundell J, Noury S, Latajka Z (2001) The nature of binding in HRgY compounds (Rg = Ar, Kr, Xe; Y = F, Cl) based on the topological analysis of the electron localization function (ELF). In: Maruani J, Minot C, McWeeny R, Smeyers YG, Wilson S (eds) New trends in quantum systems in chemistry and physics. Kluwer Academic Publisher, Dordrecht, pp 259–279

  8. Berski S, Latajka Z, Silvi B, Lundell J (2001) Electron localization function (ELF) studies of the nature of binding in neutral rare-gas containing hydrides: HKrCN, HKrNC, HXeCN, HXeNC, HXeOH and HXeSH. J Chem Phys 114:4349– 4358

    Article  CAS  Google Scholar 

  9. Latajka Z, Szczesniak M, Ratajczak H, Orville TW (1980) Properties of strong hydrogen-bonded systems.2. Abinitio SCF-MO Study of the Hydrogen-Bond between Nitric-Acid and Ammonia. J Comput Chem 1:417–419

    Article  CAS  Google Scholar 

  10. Szczesniak M, Latajka Z, Ratajczak H, Orville TW (1980) Properties of strong hydrogen-bonded systems - the formation of hydrogen-bonded ion-pair in amine...HCl systems. Chem Phys Lett 72:115–118

    Article  CAS  Google Scholar 

  11. Ilczyszyn M, Latajka Z, Ratajczak H (1981) C-13 NMR investigations of phenol-triethylamine complexes - the influence of hydrogen-bond interaction on the electronic-structure of phenols. Org Magn Res 16:173–176

    Article  CAS  Google Scholar 

  12. Ilczyszyn M, Latajka Z, Ratajczak H (1984) C-13 NMR investigations of phenol triethylamine complexes - influence of hydrogen-bond interaction on the electronic-structure of the aliphatic chain. Org Magn Res 22:419–423

    Article  CAS  Google Scholar 

  13. Szczesniak M, Hobza P, Latajka Z, Ratajczak H, Skowronek K (1984) The methylation effect in amine...HF hydrogen-bonded systems - quantum chemical and statistical thermodynamic study. J Phys Chem 88:5923–5927

    Article  CAS  Google Scholar 

  14. Latajka Z, Scheiner S (1984) Theoretical-studies of the hydrogen-bonded and lithium bonded complexes. Abstr Papers of the Am Chem Soc 187:95–PHYS

    Google Scholar 

  15. Latajka Z, Morokuma K, Ratajczak H, Orville TW (1986) Stretching force-constants of the H\(_{3}\textit {N}^{...}\)LiF lithium bonded and H\(_{3}\textit {N}^{...}\)HF hydrogen-bonded complexes - comparison study at the SCF level. J Mol Struct (Theochem) 28:429–434

    Article  CAS  Google Scholar 

  16. Latajka Z, Ratajczak H, Morokuma K, Orville TW (1986) Study of correlation-effects on stretching force-constants of the H\(_{3}\textit {N}^{...}\)LiF lithium-bonded and H\(_{3}\textit {N}^{...}\)HF hydrogen-bonded complexes. J Mol Struct 146:263–266

    Article  CAS  Google Scholar 

  17. Latajka Z, Ratajczak H, Zeegers-Huyskens T (1988) Abinitio studies of hydrogen-bonded complexes between formic-acid or methylacetate and HF or HCl. J Mol Struct (Theochem) 41:201–209

    Article  CAS  Google Scholar 

  18. Latajka Z, Ratajczak H, Person WB (1989) On the reliability of SCF ab initio calculations of vibrational frequencies and intensities of hydrogen-bonded systems. J Mol Struct 194:89–105

    Article  CAS  Google Scholar 

  19. Bouteiller Y, Latajka Z, Ratajczak H, Scheiner S (1991) Theoretical vibrational study of FX\(\dots \)NH3 (X=H, D, Li) complexes. J Chem Phys 94:2956–2960

    Article  CAS  Google Scholar 

  20. Latajka Z, Scheiner S (1991) Correlated proton-transfer potentials - (HO−H −OH) and (H2OH −OH2)+. J Mol Struct (Theochem) 80:373–385

    Article  CAS  Google Scholar 

  21. Latajka Z, Ratajczak H, Zeegers-Huyskens T, Scheiner S (1991) Abinitio studies of hydrogen-bonded complexes between uracil and HCl. J Mol Struct (Theochem) 81:409–415

    Article  CAS  Google Scholar 

  22. Latajka Z (1991) Basis-sets for molecular-interactions.4. Energy decomposition analysis. J Mol Struct (Theochem) 83:245–260

    Article  CAS  Google Scholar 

  23. Latajka Z (1992) Structure, energetics, and vibrational-spectrum of H\(_{2}\textit {O}^{...}\)X- (X=F, Cl) complexes. J Mol Struct (Theochem) 85:225–241

    Article  CAS  Google Scholar 

  24. Bouteiller Y, Latajka Z (1992) Theoretical interpretation of acetone-HF spectrum in the gas phase. J Chem Phys 97:145– 149

    Article  CAS  Google Scholar 

  25. Latajka Z, Scheiner S, Chalasinski G (1992) Basis set superposition error in proton-transfer potentials. Chem Phys Lett 196:384–389

    Article  CAS  Google Scholar 

  26. Latajka Z, Scheiner S (1992) Proton-transfer in the ground and 1st excited triplet-states of malonaldehyde. J Phys Chem 96:9764–9767

    Article  CAS  Google Scholar 

  27. Lundell J, Rasanen M, Latajka Z (1993) Complexes between formic-acid and carbon-monoxide - an abinitio investigation. J Phys Chem 97:1152–1157

    Article  CAS  Google Scholar 

  28. Mijoule C, Latajka Z, Borgis D (1993) density-functional theory applied to proton-transfer systems - a numerical test. Chem Phys Lett 208:364–368

    Article  CAS  Google Scholar 

  29. Latajka Z, Ratajczak H (1994) On the role of bond functions in accurate description of hydrogen-bonded systems hydrogen-fluoride dimer. Bul Polish Acad Sci-Chem 42:571–576

    CAS  Google Scholar 

  30. Ventura ON, Irving K, Latajka Z (1994) The dimerization shift of the OH-stretching fundamentals of the water dimer. Chem Phys Lett 217:436442

    Article  Google Scholar 

  31. Lundell J, Rasanen M, Latajka Z (1994) Theoretical-study of the H2O-2CO hydrogen-bonded ternary complexes. Chem Phys Lett 222:33–39

    Article  CAS  Google Scholar 

  32. Bouteiller Y, Latajka Z (1994) New theoretical interpretation of acetone FX (X=H, D) infrared-spectrum in the gas-phase. J Mol Struct 322:175–180. Xth Workshop on Horizons in Hydrogen Bond Research, Autrans, France, Sep 12–17, 1993

    Article  CAS  Google Scholar 

  33. Pagsberg P, Ratajczak E, Sillesen A, Latajka Z (1994) kinetics and thermochemistry of the reversible gas-phase reaction HONO + NH3 \(\rightleftharpoons \) H3N-HONO studied by infrared diode-laser spectroscopy. Chem Phys Lett 227:6–12

    Article  CAS  Google Scholar 

  34. Latajka Z, Bouteiller Y (1994) Application of density functional methods for the study of hydrogen-bonded systems: the hydrogen fluoride dimer. J Chem Phys 101:9793–9799

    Article  CAS  Google Scholar 

  35. Lundell J, Rasanen M, Latajka Z (1994) Matrix isolation FTIR and ab initio study of complexes between formic-acid and nitrogen. Chem Phys 189:245–260. International conference on the chemistry and physics of matrix isolated species, Helsinki, Finland, 1993

    Article  CAS  Google Scholar 

  36. Latajka Z, Ratajczak H, Wasif S, Salama S (1995) Structure and energetics of SO\(_{2}-\textit {X}^{-}\) (X=F, Cl, Br, and I) complexes. J Mol Struct (Theochem) 333:291–296

    Article  CAS  Google Scholar 

  37. Abkowicz A, Latajka Z, Scheiner S, Chalasinski G (1995) Site-site function and successive reaction counterpoise calculation of basis-set superposition error for proton-transfer. J Mol Struct (Theochem) 342:153–159

    Article  CAS  Google Scholar 

  38. Mielke Z, Tokhadze K, Latajka Z, Ratajczak E (1996) Spectroscopic and theoretical studies of the complexes between nitrous acid and ammonia. J Phys Chem 100:539–545

    Article  CAS  Google Scholar 

  39. Tokhadze K, Uspensky A, Mielke Z, Latajka Z, Ratajczak H (1996) Spectroscopic and theoretical studies of the OCO...HF complex in pressurized gases. JCSFT 92:3473–3479

    CAS  Google Scholar 

  40. Latajka Z, Berski S (1996) Density functional study of the H\(_{3}\textit {N}^{...}\)(Cl-)2 system - the importance of Hartree-Fock exchange in density functional methods. J Mol Struct (Theochem) 371:11–16

    Article  CAS  Google Scholar 

  41. Berski S, Latajka Z (1997) Periodic Hartree-Fock study of (HF)(infinity) chain. J Mol Struct (Theochem) 389:147–154

    Article  CAS  Google Scholar 

  42. Latajka Z, Scheiner S (1997) Structure, energetics and vibrational spectra of dimers, trimers, and tetramers of HX (X=Cl, Br, I). Chem Phys 216:37–52

    Article  CAS  Google Scholar 

  43. Lundell J, Latajka Z (1997) Density functional study of hydrogen-bonded systems: the water-carbon monoxide complex. J Phys Chem A 101:5004–5009

    Article  CAS  Google Scholar 

  44. Boldeskul I, Tsymbal I, Ryltsev E, Latajka Z, Barnes A (1997) Reversal of the usual ν(C-H/D) spectral shift of haloforms in some hydrogen-bonded complexes. J Mol Struct 437:167– 171

    Article  Google Scholar 

  45. Ciunik Z, Berski S, Latajka Z, Leszczynski J (1998) New aspects of weak C−H ...π bonds: intermolecular interactions between alicyclic and aromatic rings in crystals of small compounds, peptides and proteins. J Mol Struct 442:125–134

    Article  CAS  Google Scholar 

  46. Wierzejewska M, Mielke Z, Wieczorek R, Latajka Z (1998) Infrared matrix isolation and theoretical studies of SO2−HNO 3 and SO2 −HONO systems. Chem Phys 228:17–29

    Article  CAS  Google Scholar 

  47. Berski S, Lundell J, Latajka Z, Leszczynski J (1998) Oxygen-bound fluorine (O-F): ab initio investigations of the hypofluorous acid dimer. J Phys Chem A 102:10768–10776

    Article  CAS  Google Scholar 

  48. Latajka Z, Mielke Z, Olbert-Majkut A, Wieczorek R, Tokhadze K (1999) Ab initio calculations and matrix infrared spectra of the nitrous acid complexes with HF and HCl. Phys Chem ChemPhys 1:2441–2448

    Article  CAS  Google Scholar 

  49. Stepanian S, Reva I, Radchenko E, Latajka Z, Wierzejewska M, Ratajczak H (1999) Combined matrix isolation IR spectroscopic and ab initio quantum chemical study of the molecular structure of aminomethylphosphinic acid. J Mol Struct 484:19–30

    Article  CAS  Google Scholar 

  50. Wieczorek R, Latajka Z, Lundell J (1999) Quantum chemical study of the bimolecular complex of HONO. J Phys Chem A 103:6234–6239

    Article  CAS  Google Scholar 

  51. Lundell J, Berski S, Latajka Z (1999) Density functional study of the Xe\(_{2}\textit {H}^{+3}\) cation. Chem Phys 247:215–224

    Article  CAS  Google Scholar 

  52. Biczysko M, Latajka Z (1999) The influence of water molecules on the proton position in H3N −HX (X = F, Cl, Br) complexes. Chem Phys Lett 313:366–373

    Article  CAS  Google Scholar 

  53. Abkowicz-Bienko A, Latajka Z, Bienko D, Michalska D (1999) Theoretical infrared spectrum and revised assignment for para-nitrophenol. Density functional theory studies. Chem Phys 250:123–129

    Article  CAS  Google Scholar 

  54. Lundell J, Berski S, Latajka Z (2000) Dihydrogen-bonded complexes of xenon dihydride with water: ab initio calculations and topological analysis of electron localisation function (ELF). Phys Chem ChemPhys 2:5521–5527

    Article  CAS  Google Scholar 

  55. Mlynarz P, Gaggelli N, Panek J, Stasiak M, Valensin G, Kowalik-Jankowska T, Leplawy M, Latajka Z, Kozlowski H (2000) How the alpha-hydroxymethylserine residue stabilizes oligopeptide complexes with nickel(II) and copper(II) ions. J Chem Soc, Dalton Trans, 1033–1038

  56. Abkowicz-Bienko A, Latajka Z (2000) Density functional study on phenol derivative-ammonia complexes in the gas phase. J Phys Chem A 104:1004–1008

    Article  CAS  Google Scholar 

  57. Mielke Z, Latajka Z, Olbert-Majkut A, Wieczorek R (2000) Matrix infrared spectra and ab initio calculations of the nitrous acid complexes with nitrogen monoxide. J Phys Chem A 104:3764–3769

    Article  CAS  Google Scholar 

  58. Abkowicz-Bienko A, Biczysko M, Latajka Z (2000) Solvent effect on hydrogen bonded ammonia-hydrogen halide complexes: continuum medium versus cluster models. Comput Chem 24:303–309. 5th Conference on Computers in Chemistry/Workshop on New Trends in Computational Methods for Large Molecular Systems, Szklarska, Poland, Jul 01–06, 1999

    Article  CAS  PubMed  Google Scholar 

  59. Berski S, Lundell J, Latajka Z (2000) A density functional study of the xenon dihydride-water complex. J Mol Struct 552:223–232. XIIIth International Workshop on Horizons in Hydeogen Bond Research, Swieradow, Poland, Sep 02–09, 1999

    Article  CAS  Google Scholar 

  60. Abkowicz-Bienko A, Bienko D, Latajka Z (2000) Density functional studies on the two conformers of 2-fluoro-4,6-dinitrophenol: vibrational assignment based on potential energy distribution. J Mol Struct 552:165–175. XIIIth International Workshop on Horizons in Hydeogen Bond Research, Swieradow, Poland, Sep 02–09, 1999

    Article  CAS  Google Scholar 

  61. Barnes A, Hansen P, Latajka Z, Sobczyk L (2000) Special issue: horizons in hydrogen bond research 1999: a collection of papers presented at the XIIIth Workshop, Horizons in Hydrogen Bond Research, Swieradow Zdroj, Poland, 2-9 September 1999 - Preface. J Mol Struct 552:IX

    Article  CAS  Google Scholar 

  62. Mierzwicki K, Berski S, Latajka Z (2000) Nature of chemical bonds in MCCH (M=Li, Na, K) based on the topological analysis of electron localisation function (ELF) and electron density. Chem Phys Lett 331:538–546

    Article  CAS  Google Scholar 

  63. Latajka Z, Ratajczak H (2001) Quantum chemical studies of Cl-...HNO complex in the singlet and triplet electronic states. Bul Polish Acad Sci-Chem 49:125–131

    CAS  Google Scholar 

  64. Lundell J, Latajka Z (2001) Density functional studies of hydrogen-bonded systems II. Solvation of the H2O-CO complex by a nonpolar solvent. Chem Phys 263:221–230

    Article  CAS  Google Scholar 

  65. Ratajczak H, Baran J, Barnes A, Barycki J, Debruse S, Latajka Z, May M, Pietraszko A (2001) Structural and vibrational study of a novel nonlinear optical material: 3-nitrobenzoic acid hydrazide. J Mol Struct 596:17–23. 3rd International Conference of the Vibrational Spectroscopy in Materials Science, Univ. Mining Metallurgy, Krakow, Poland, Sep 23–26, 2000

    Article  CAS  Google Scholar 

  66. Atamas N, Yaremko A, Bulavin L, Pogorelov V, Berski S, Latajka Z, Ratajczak H, Abkowicz-Bienko A (2002) Anharmonic interactions and Fermi resonance in the vibrational spectra of alcohols. J Mol Struct 605:187–198

    Article  CAS  Google Scholar 

  67. Biczysko M, Latajka Z (2002) Accuracy of theoretical potential energy profiles along proton-transfer coordinate for XH−NH 3 (X = F, Cl, Br) hydrogen-bonded complexes. J Phys Chem A 106:3197–3201

    Article  CAS  Google Scholar 

  68. Gajewski G, Latajka Z, Ratajczak H (2002) Density functional studies of the cobaltous acid dimer - preliminary results. Bul Polish Acad Sci-Chem 50:131–137

    CAS  Google Scholar 

  69. Bienko A, Latajka Z (2002) Density functional studies of 1 : 1 and 1 : 2 sulfuric acid complexes with carbon monoxide. Chem Phys 282:207–218

    Article  CAS  Google Scholar 

  70. Barnes A, Latajka Z, Biczysko M (2002) Proton transfer in strongly hydrogen-bonded molecular complexes: matrix effects. J Mol Struct 614:11–21. 6th International Conference on Molecular Spectroscopy, Wroclaw, Poland, Sep 29-Oct 03, 2001

    Article  CAS  Google Scholar 

  71. Olbert-Majkut A, Mielke Z, Wieczorek R, Latajka Z (2002) Matrix isolation and DFT studies of nitrous acid complexes with nitrogen dioxide. Int J Quant Chem 90:1140–1150

    Article  CAS  Google Scholar 

  72. Berski S, Latajka Z (2002) Comparison of lithium and hydrogen bonds in (X...Li...X)- and (X... X)- (X=F, Cl and Br) complexes: topological analysis of electron localization function. Int J Quant Chem 90:1108–1120

    Article  CAS  Google Scholar 

  73. Latajka Z, Gajewski G, Ratajczak H, Venturini J (2003) Hyperpolarizalities of pyridine derivatives and their protonated species: ab initio studies. Bul Polish Acad Sci-Chem 51:1–4

    CAS  Google Scholar 

  74. Bienko A, Latajka Z (2003) Theoretical study on the structures and vibrational spectra of the H2SO 4 −(CO2)x (x = 1, 2) hydrogen bonded complexes. Chem Phys Lett 374:577–582

    Article  CAS  Google Scholar 

  75. Bienko A, Latajka Z, Sawka-Dobrowolska W, Sobczyk L, Ozeryanskii V, Pozharskii A, Grech E, Nowicka-Scheibe J (2003) Low barrier hydrogen bond in protonated proton sponge. X-ray diffraction, infrared, and theoretical ab initio and density functional theory studies. J Chem Phys 119:4313–4319

    Article  CAS  Google Scholar 

  76. Mierzwicki K, Latajka Z (2003) Basis set superposition error in N-body clusters. Chem Phys Lett 380:654–664

    Article  CAS  Google Scholar 

  77. Bil A, Latajka Z (2004) The examination of the hydroperoxy radical and its closed-shell “analogues” by means of topological methods of quantum chemistry: AIM and ELF. Chem Phys 303:43–53

    Article  CAS  Google Scholar 

  78. Berski S, Ciunik Z, Drabent K, Latajka Z, Panek J (2004) Dominant role of C−Br...N halogen bond in molecular self-organization. Crystallographic and quantum-chemical study of Schiff-base-containing triazoles. J Phys Chem B 108:12327–12332

    Article  CAS  Google Scholar 

  79. Krajewska M, Latajka Z, Mielke Z, Mierzwicki K, Olbert-Majkut A, Saldyka M (2004) Hydrogen bonding in allene complexes with nitric and nitrous acids: theoretical and infrared matrix isolation study. J Phys Chem B 108:15578–15586

    Article  CAS  Google Scholar 

  80. Goubet M, Asselin P, Soulard P, Lewerenz M, Latajka Z (2004) Vibrational dynamics of medium strength hydrogen bonds: Fourier transform infrared spectra and band contour analysis of the DF stretching region of (CH2)2S −DF. J Chem Phys 121:7784–7794

    Article  CAS  PubMed  Google Scholar 

  81. Asselin P, Goubet M, Latajka Z, Soulard P, Lewerenz M (2005) Vibrational dynamics of the hydrogen bonded complexes (CH2)2O...HF and ...DF investigated by combined jet- and cell-Fourier transform infrared spectroscopy. Phys Chem ChemPhys 7:592–599

    Article  CAS  Google Scholar 

  82. Bil A, Latajka Z (2005) Hydroperoxy radical as hydrogen bond donor: NH3...HOO complex - ab initio and topological study. Chem Phys Lett 406:366–370

    Article  CAS  Google Scholar 

  83. Wawrzyniak P, Panek J, Lundell J, Latajka Z (2005) On the nature of bonding in HCOOH...Ar and HCOOH...Kr complexes. J Mol Mod 11:351–361. International Workshop on Modeling and Design of Molecular Materials, Wroclaw Univ Technol, Wroclaw, Poland, Sep 16–20, 2004

    Article  CAS  Google Scholar 

  84. Panek J, Wawrzyniak P, Latajka Z, Lundell J (2006) Interaction energy decomposition analysis for formic acid complexes with argon and krypton atoms. Chem Phys Lett 417:100–104

    Article  CAS  Google Scholar 

  85. Bil A, Latajka Z (2006) The hydroperoxy radical as a hydrogen bond acceptor. HOO-HCl complexes - Ab initio study. J Comput Chem 27:287–295

    Article  CAS  PubMed  Google Scholar 

  86. Lundell J, Berski S, Lignell A, Latajka Z (2006) Quantum chemical study of the hydrogen-bonded HXeOH−H2O complex. J Mol Struct 790:31–39. 16th International Conference on Horizons in Hydrogen Bond Research, Roskilde, Denmark, Aug 30-Sep 04, 2005

    Article  CAS  Google Scholar 

  87. Berski S, Latajka Z (2006) Quantum chemical topology description of the hydrogen transfer between the ethynyl radical and ammonia (C2H + NH3)–the electron localization function study. Chem Phys Lett 426:273–279

    Article  CAS  Google Scholar 

  88. Bil A, Berski S, Latajka Z (2007) On three-electron bonds and hydrogen bonds in the open-shell complexes [H2X 2]+ for X = F, Cl, and Br. J Chem Inf Mod 47:1021–1030

    Article  CAS  Google Scholar 

  89. Durlak P, Morrison CA, Middlemiss DS, Latajka Z (2007) Car-Parrinello and path integral molecular dynamics study of the hydrogen bond in the chloroacetic acid dimer system. J Chem Phys 127:064304

    Article  CAS  PubMed  Google Scholar 

  90. Latajka Z, Gajewski G, Barnes AJ, Ratajczak H (2007) Hyperpolarizabilities of strongly hydrogen-bonded molecular complexes: PM3 and ab initio studies. J Mol Struct 844:340– 342

    Article  CAS  Google Scholar 

  91. Latajka Z, Gajewski G, Barnes AJ, Ratajczak H (2008) Hyperpolarizabilities of hydrogen-bonded complexes of phenol derivatives with ammonia: PM3 and ab initio studies. J Mol Struct 880:48–51. 17th International Conference on Horizons in Hydrogen Bond Research, St Petersburg, RUSSIA, Sep 01-08, 2007

    Article  CAS  Google Scholar 

  92. Lundell J, Latajka Z (2008) Vibrational calculations for the H\(_{2}\textit {O}^{...}\)CO complex. J Mol Struct 887:172–179. 9th International Conference on Molecular Spectroscopy, Wroclaw, Poland, Sep 12–16, 2007

    Article  CAS  Google Scholar 

  93. Ratajczak H, Barnes AJ, Baran J, Yaremko A M, Latajka Z, Dopleralski P (2008) Anharmonic interactions and infrared bandshape of the hydrogen bond vibration of potassium hydrogen (deuterium) maleate crystals. J Mol Struct 887:9–19. 9th International Conference on Molecular Spectroscopy, Wroclaw, Poland, Sep 12–16, 2007

    Article  CAS  Google Scholar 

  94. Kisowska K, Berski S, Latajka Z (2008) The structure and chemical bonding in the N-2-CuX and N-2 center dot center dot center dot XCu (X = F, Cl, Br) systems studied by means of the molecular orbital and quantum chemical topology methods. J Comput Chem 29:2677–2692

    Article  CAS  PubMed  Google Scholar 

  95. Dopieralski P, Panek J, Latajka Z (2009) First-principles investigation of isomerization by proton transfer in beta-fumaric acid crystal. J Chem Phys 130

  96. Latajka Z, Gajewski G, Barnes AJ, Xue D, Ratajczak H (2009) Hyperpolarizabilities of some model hydrogen-bonded complexes: PM3 and ab initio studies. J Mol Struct 928:121–124

    Article  CAS  Google Scholar 

  97. Durlak P, Latajka Z, Berski S (2009) A Car-Parrinello and path integral molecular dynamics study of the intramolecular lithium bond in the lithium 2-pyridyl-N-oxide acetate. J Chem Phys 131

  98. Dopieralski PD, Latajka Z, Olovsson I (2009) Proton distribution in KHCO3 from ab initio molecular dynamics simulation. Chem Phys Lett 476:223–226

    Article  CAS  Google Scholar 

  99. Durlak P, Latajka Z (2009) Car-Parrinello molecular dynamics and density functional theory simulations of infrared spectra for acetic acid monomers and cyclic dimers. Chem Phys Lett 477:249–254

    Article  CAS  Google Scholar 

  100. Durlak P, Latajka Z (2009) Car-Parrinello and path integral molecular dynamics study of the intramolecular hydrogen bond in the novel class of anionic H-chelates: 6-Nitro-2,3-dipyrrol-2-ylquinoxaline anion. Chem Phys Lett 480:173–177

    Article  CAS  Google Scholar 

  101. Yaremko AM, Ratajczak H, Barnes AJ, Baran J, Durlak P, Latajka Z (2009) Fermi resonance and strong anharmonic effects in the absorption spectra of the m-OH (m-OD) vibration of solid H- and D-benzoic acid. Chem Phys 364:51–63

    Article  CAS  Google Scholar 

  102. Dopieralski P, Panek J, Mierzwicki K, Latajka Z, Ratajczak H, Barnes A (2009) Theoretical study on the polarizability and hyperpolarizability of hydrogen bonded complexes of nitropyridines with hydrogen fluoride. J Mol Struct (Theochem) 916:72–75

    Article  CAS  Google Scholar 

  103. Dopieralski PD, Latajka Z, Olovsson I (2010) Proton-transfer dynamics in the (HCO2−)2 dimer of KHCO2 from Car-Parrinello and path-integrals molecular dynamics calculations. Acta Cryst B 66:222–228

    Article  CAS  Google Scholar 

  104. Shishkin OV, Dopieralski P, Palamarchuk GV, Latajka Z (2010) Rotation around the glycosidic bond as driving force of proton transfer in protonated 2 ‘-deoxyriboadenosine monophosphate (dAMP). Chem Phys Lett 490:221–225

    Article  CAS  Google Scholar 

  105. Dopieralski PD, Latajka Z, Olovsson I (2010) Proton transfer dynamics in crystalline maleic acid from molecular dynamics calculations. J Chem Theory Comput 6:1455–1461

    Article  CAS  PubMed  Google Scholar 

  106. Durlak P, Latajka Z (2010) Car-Parrinello and path integral molecular dynamics study of the hydrogen bonds in 2-acetyl-1,8-dihydroxy-3,6-dimethylnaphthalene. Chem Phys Lett 499:56–61

    Article  CAS  Google Scholar 

  107. Berski S, Latajka Z, Gordon AJ (2010) Ab initio and quantum chemical topology studies on the isomerization of HONO to HNO2. Effect of the Basis Set in QCT. J Comput Chem 31:2555–2567

    Article  CAS  PubMed  Google Scholar 

  108. Kalinowski J, Berski S, Latajka Z (2011) AIM and BET approach for ionic and covalent bond evolution in reaction of hydrogen elimination from ammonia and lithium hydride. Chem Phys Lett 501:587–593

    Article  CAS  Google Scholar 

  109. Mierzwicki K, Berski S, Latajka Z (2011) AIM and ELF analysis of the H-, Me-, and F-substituted Fe-III-TAML complexes. Chem Phys Lett 507:29–36

    Article  CAS  Google Scholar 

  110. Berski S, Latajka Z (2011) A mechanism of the 1,3-dipolar cycloaddition between the hydrogen nitryl HNO2, and acetylene HCCH: The electron localization function study on evolution of the chemical bonds. Int J Quant Chem 111:2378–2389

    Article  CAS  Google Scholar 

  111. Durlak P, Latajka Z (2011) Proton transfer dynamics in the propionic acid dimer from path integral molecular dynamics calculations. J Mol Mod 17:2159–2168

    Article  CAS  Google Scholar 

  112. Panek P, Biczysko M, Latajka Z (2011) Reinvestigation of spectroscopic properties for ammonia-hydrogen halide complexes from Car-Parrinello molecular dynamics. Chem Phys Lett 514:44–48

    Article  CAS  Google Scholar 

  113. Durlak P, Berski S, Latajka Z (2011) Car-Parrinello and path integral molecular dynamics study of the hydrogen bond in the acetic acid dimer in the gas phase. J Mol Mod 17:2995– 3004

    Article  CAS  Google Scholar 

  114. Dopieralski P, Perrin CL, Latajka Z (2011) On the intramolecular hydrogen bond in solution: Car-Parrinello and path integral molecular dynamics perspective. J Chem Theory Comput 7:3505–3513

    Article  CAS  PubMed  Google Scholar 

  115. Tsuge M, Berski S, Stachowski R, Rasanen M, Latajka Z, Khriachtchev L (2012) High kinetic stability of HXeBr upon interaction with carbon dioxide: HXeBr\(^{...}\textit {CO}_{2}\) complex in a xenon matrix and HXeBr in a carbon dioxide matrix. J Phys Chem A 116:4510–4517

    Article  CAS  PubMed  Google Scholar 

  116. Durlak P, Latajka Z (2013) Ab initio molecular dynamics study of the very short O-H center dot center dot center dot O hydrogen bonds in the condensed phases. J Chem Theory Comput 9:65–72

    Article  CAS  PubMed  Google Scholar 

  117. Tsuge M, Berski S, Rasanen M, Latajka Z, Khriachtchev L (2013) Experimental and computational study of the HXeI center dot center dot center dot HY complexes (Y = Br and I). J Chem Phys 138

  118. Durlak P, Mierzwicki K, Latajka Z (2013) Investigations of the very short hydrogen bond in the crystal of nitromalonamide via Car-Parrinello and path integral molecular dynamics. J Phys Chem B 117:5430–5440

    Article  CAS  PubMed  Google Scholar 

  119. Cao Q, Berski S, Rasanen M, Latajka Z, Khriachtchev L (2013) Spectroscopic and computational characterization of the HCO center dot center dot center dot H2O complex. J Phys Chem A 117:4385–4393

    Article  CAS  PubMed  Google Scholar 

  120. Tsuge M, Berski S, Rasanen M, Latajka Z, Khriachtchev L (2014) Matrix-isolation and computational study of the HXeY\(^{...}\textit {H}_{2}\)O complexes (Y = Cl, Br, and I). J Chem Phys, 140

  121. Makarewicz E, Gordon AJ, Mierzwicki K, Latajka Z, Berski S (2014) Effects of xenon insertion into hydrogen bromide. Comparison of the electronic structure of the HBr\(^{...}\textit {CO}_{2}\) and HXeBr\(^{...}\textit {CO}_{2}\) complexes using quantum chemical topology methods: electron localization function, atoms in molecules and symmetry adapted perturbation theory. J Phys Chem A 118:3980–3989

    Article  CAS  PubMed  Google Scholar 

  122. Durlak P, Latajka Z (2014) Car-Parrinello and path integral molecular dynamics study of the intramolecular hydrogen bonds in the crystals of benzoylacetone and dideuterobenzoylacetone. Phys Chem ChemPhys 16:23026–23037

    Article  CAS  Google Scholar 

  123. Bil A, Latajka Z, Biczysko M (2018) Hydrogen detachment driven by a repulsive 1 pi sigma* state - an electron localization function study of 3-amino-1,2,4-triazole. Phys Chem ChemPhys 20:5210–5216

    Article  CAS  Google Scholar 

  124. Durlak P, Latajka Z (2018) Car-Parrinello and path integral molecular dynamics study of the proton transfer in the intramolecular hydrogen bonds in the ketohydrazone-azoenol system. J Phys Chem B 122:7862–7873

    Article  CAS  PubMed  Google Scholar 

  125. Durlak P, Latajka Z (2019) Investigations of the hydrogen bond in the crystals of tropolone and thiotropolone via car-parrinello and path integral molecular dynamics. J Comput Chem 40:671–687

    CAS  PubMed  Google Scholar 

  126. Latajka Z, Ratajczak H, Romanowska K, Tomczak Z (1978) CNDO-2 study on lithium bonding in lithium methoxide-amine systems Monatshefte für. Chemie 109:943–951

    CAS  Google Scholar 

  127. Szczesniak M, Latajka Z, Piecuch P, Ratajczak H, Orville TW, Rao C (1985) Theoretical-studies of lithium bonding in lithium-chloride aliphatic amine complexes. Chem Phys 94:55–63

    Article  CAS  Google Scholar 

  128. Mierzwicki K, Latajka Z (2000) Basis set superposition error in calculations of nonadditive effects in Li(NH3)n and Li(NH3)n+ (n = 1-4) clusters. Chem Phys Lett 325:465–472

    Article  CAS  Google Scholar 

  129. Berski S, Latajka Z (2002) Comparison of lithium and hydrogen bonds in (X...Li...X)−) and (X...H ...X)−) (X=F, Cl and Br) complexes: topological analysis of electron localization function. Int J Quant Chem 90:1108–1120

    Article  CAS  Google Scholar 

  130. Silvi B, Ratajczak H (2016) Hydrogen bonding and delocalization in the ELF analysis approach. Phys Chem ChemPhys 18:27442–27449

    Article  CAS  Google Scholar 

  131. Alcock N (1972) Secondary bonding to nonmetallic elements vol. 15 of Adv. Inorg. Chem. and Radiochem. 1–58 Academic Press

  132. Bent HA (1968) Structural chemistry of donor-acceptor interactions. Chem Rev 68:587–648

    Article  CAS  Google Scholar 

  133. Moore TS, Winmill TF (1912) CLXXVII.—The state of amines in aqueous solution. J Chem Soc 101:1635–1676

    Article  CAS  Google Scholar 

  134. Latimer WM, Rodebush WH (1920) Polarity and ionization from the standpoint of the Lewis theory of valence. J Am Chem Soc 42:1419–1433

    Article  CAS  Google Scholar 

  135. Legon AC, Walker NR (2018) What’s in a name? “Coinage-metal” non-covalent bonds and their definition. Phys Chem Chem Phys 20:19332–19338

    Article  CAS  PubMed  Google Scholar 

  136. Mcnaught AD, Wilkinson A (1997) IUPAC. Compendium of chemical terminology, 2nd ed. (the “Gold Book”). WileyBlackwell; 2nd Revised edition edition

  137. Del Bene JE, Alkorta I, Elguero J (2010) Do traditional, chlorine-shared, and ion-pair halogen bonds exist? An ab initio investigation of FCl:CNX complexes. J Phys Chem A 114:12958–12962

    Article  CAS  PubMed  Google Scholar 

  138. Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2011) Structures, energies, bonding, and NMR properties of pnicogen complexes H2XP: NXH2 (X = H, CH2, NH2, OH, F, Cl). J Phys Chem A 115:13724–13731

    Article  CAS  PubMed  Google Scholar 

  139. Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2012) Structures, binding energies, and spin–spin coupling constants of geometric isomers of pnicogen homodimers (PHFX)2, X = F, Cl, CN, CH3. NC J Phys Chem A 116:3056–3060

    Article  CAS  PubMed  Google Scholar 

  140. Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2012) Interplay of F-H...F hydrogen bonds and P...N pnicogen bonds . J Phys Chem A 116:9205–9213

    Article  CAS  PubMed  Google Scholar 

  141. Scheiner S (2012) The pnicogen bond: its relation to hydrogen, halogen, and other noncovalent bonds. Acc Chem Res 46:280–288

    Article  CAS  PubMed  Google Scholar 

  142. Alkorta I, Sanchez-Sanz G, Elguero J, Del Bene JE (2012) FCl:PCX complexes: old and new types of halogen bonds. J Phys Chem A 116:2300–2308

    Article  CAS  PubMed  Google Scholar 

  143. Alkorta I, Sánchez-Sanz G, Elguero J, Del Bene JE (2012) Influence of hydrogen bonds on the PP pnicogen bond. J Chem Theory Comput 8:2320–2327

    Article  CAS  PubMed  Google Scholar 

  144. Alkorta I, Elguero J, Del Bene JE (2013) Pnicogen bonded complexes of PO2X (X = F, Cl) with nitrogen bases. J Phys Chem A 117:10497–10503

    Article  CAS  PubMed  Google Scholar 

  145. Del Bene JE, Alkorta I, Elguero J (2013) Properties of complexes H2,C =(X)P:PXH2, for X = F, Cl, OH, CN, NC, CCH, H, CH2, and BH2: PP Pnicogen bonding at σ-Holes and π-holes. J Phys Chem A 117:11592–11604

    Article  CAS  PubMed  Google Scholar 

  146. Del Bene JE, Alkorta I, Elguero J (2014) Influence of substituent effects on the formation of PCl pnicogen bonds or halogen bonds. J Phys Chem A 118:2360–2366

    Article  CAS  PubMed  Google Scholar 

  147. Del Bene JE, Alkorta I, Elguero J (2014) Pnicogen-bonded anionic complexes. J Phys Chem A 118:3386–3392

    Article  CAS  PubMed  Google Scholar 

  148. Grabowski SJ (2014) Boron and other triel lewis acid centers: from hypovalency to hypervalency. ChemPhysChem 15:2985–2993

    Article  CAS  PubMed  Google Scholar 

  149. Alikhani E, Fuster F, Madebene B, Grabowski SJ (2014) Topological reaction sites – very strong chalcogen bonds. Phys Chem Chem Phys 16:2430–2442

    Article  CAS  PubMed  Google Scholar 

  150. Del Bene JE, Alkorta I, Elguero J (2015) Substituent effects on the properties of pnicogen-bonded complexes H2XP: PYH2, for X, Y = F, Cl, OH, NC, CCH, CH3. CN, and H J Phys Chem A 119:224–233

    Article  CAS  Google Scholar 

  151. Duarte DJR, Peruchena NM, Alkorta I (2015) Double hole-lump interaction between halogen atoms. J Phys Chem A 119:3746–3752

    Article  CAS  PubMed  Google Scholar 

  152. Grabowski SJ (2015) Triel bonds, π,-hole-π-electrons interactions in complexes of boron and aluminium trihalides and trihydrides with acetylene and ethylene . Molecules 20:11297–11316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Marín-Luna M, Alkorta I, Elguero J (2016) Cooperativity in tetrel bonds. J Phys Chem A 120:648–656

    Article  CAS  PubMed  Google Scholar 

  154. Bauzá A, Alkorta I, Frontera A, Elguero J (2013) On the reliability of pure and hybrid DFT methods for the evaluation of halogen, chalcogen, and pnicogen bonds involving anionic and neutral electron donors. J Chem Theory Comput 9:5201–5210

    Article  CAS  PubMed  Google Scholar 

  155. Grabowski SJ, Sokalski WA (2017) Are various σ-hole bonds steered by the same mechanisms? ChemPhysChem 18:1569–1577

    Article  CAS  PubMed  Google Scholar 

  156. Dong W, Li Q, Scheiner S (2018) Comparative strengths of Tetrel, Pnicogen, Chalcogen, and halogen bonds and contributing factors molecules 23

  157. Alkorta I, Legon AC (2018) An Ab initio investigation of the geometries and binding strengths of tetrel-, pnictogen-, and chalcogen-bonded complexes of CO2, N2,O, and CS2 with Simple Lewis Bases: Some Generalizations Molecules 23

  158. Varadwaj PR, Varadwaj A, Marques HM, MacDougall PJ (2019) The chalcogen bond: can it be formed by oxygen? Phys Chem ChemPhys 21:19969–19986

    Article  CAS  Google Scholar 

  159. Varadwaj A, Marques HM, Varadwaj PR (2019) Is the fluorine in molecules dispersive? Is molecular electrostatic potential a valid property to explore fluorine-centered non-covalent interactions? Molecules 24:379

    Article  CAS  PubMed Central  Google Scholar 

  160. Causà M, Savin A, Silvi B (2014) Atoms and bonds in molecules and chemical explanations. Foundation of Chemistry 13:2–26

    Google Scholar 

  161. Fuster F, Silvi B (2000) Determination of protonation sites in bases from topological rules. Chem Phys 252:279–287

    Article  CAS  Google Scholar 

  162. Grabowski SJ (2014) Tetrel bond-σ-hole bond as a preliminary stage of the SN2 reaction. Phys Chem Chem Phys 16:1824–1834

    Article  CAS  PubMed  Google Scholar 

  163. Hempel CG, Oppenheim P (1948) Studies in the logic of explanation. Philosophy of Science 15:135–175

    Article  Google Scholar 

  164. Nelson PG (2015) A modern version of Lewis’s theory of valency found. Chem 17:153–162

    CAS  Google Scholar 

  165. Daudel R (1953) Sur la localisabilité, des corpuscules dans les noyaux et les cortèges électroniques des atomes et des molécules. Compt Rend Acad Sci 237:601–603

    CAS  Google Scholar 

  166. Daudel R, Brion H, Odiot S (1955) Localizability of electrons in atoms and molecules—application to the study of the notion of shell and of the nature of chemical bonds. J Chem Phys 23:2080–2083

    Article  CAS  Google Scholar 

  167. Daudel R, Odiot S, Brion H (1954) Théorie de la localisabilité des corpuscules.1. La notion de loge et la signification gé,ometrique de la notion de couche dans le cortège électronique des atomes. J Chim Phys 51:74–77

    Article  CAS  Google Scholar 

  168. Aslangul C, Constanciel R, Daudel R, Kottis P (1972) Aspects of the localizability of electrons and molecules: Loge theory and related methods. In: Löwdin PO (ed) Advances in quantum chemistry, vol 6. Academic Press, New York, pp 93–141

  169. Aslangul C, Constanciel R, Daudel R, Esnault L, Ludeña EV (1974) The loge theory as a starting point for variational calculations. I. General formalism. Int J Quant Chem 8:499–522

    Article  CAS  Google Scholar 

  170. Bader RFW (1975) Comparison of loge and virial methods of partitioning molecular charge distributions. In: Chalvet O, Daudel R, Diner S, Malrieu JP (eds) Localization and delocalization in quantum chemistry, vol I. Reidel, Dordrecht, pp 15–38

  171. Gallegos A, Carbó-Dorca R, Lodier F, Cancès E, Savin A (2005) Maximal probability domains in linear molecules. J Comput Chem 26:455–460

    Article  CAS  PubMed  Google Scholar 

  172. Scemama A, Caffarel M, Savin A (2007) Maximum probability domains from quantum Monte Carlo calculations. J Comput Chem 28:442

    Article  CAS  PubMed  Google Scholar 

  173. Lopes OM, Braïda B, Causà M, Savin A (2012) Advances in the theory of quantum systems in chemistry and physics chap. understanding maximum probability domains with simple models. Springer, Netherlands, pp 173–184

    Google Scholar 

  174. Menéndez M, Martín Pendás A, Braïda B, Savin A (2015) A view of covalent and ionic bonding from maximum probability domains. Comput Theor Chem 1053:142–149

    Article  CAS  Google Scholar 

  175. Diner S, Claverie P (1976) Statistical and stochastic aspects of the delocalization problem in quantum mechanics. In: Chalvet O, Daudel R, Diner S, Malrieu JP (eds) Localization and delocalization in quantum chemistry, vol II. Reidel, Dordrecht, pp 395–448

  176. Silvi B, Fourré I, Alikhani E (2005) The topological analysis of the electron localization function: a key for a position space representation of chemical bonds Monatshefte für. Chemie 136:855–879

    CAS  Google Scholar 

  177. Silvi B (2016). In: Mingos PDM (ed) The relevance of the ELF topological approach to the Lewis, Kossel, and Langmuir bond model. Springer, Berlin, pp 213–247

  178. Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization function. Nature 371:683–686

    Article  CAS  Google Scholar 

  179. Häussermann U, Wengert S, Nesper R (1994) Localization of electrons in intermetallic phases containing aluminium. Angew Chem Int Ed Engl 33:2069–2072

    Article  Google Scholar 

  180. Gillespie RJ, Robinson EA (2007) Models of molecular geometry. J Comput Chem 28:87–97

    Article  CAS  PubMed  Google Scholar 

  181. Choukroun R, Donnadieu B, Zhao JS, Cassoux P, Lepetit C, Silvi B (2000) Synthesis and characterization of [Cp2V(μν 2 : ν 4-butadyne) MCp\(^{\prime }_{2}\)] heterometallic complexes (M = Ti, Zr, Cp\(^{\prime }\) = C5H 5, C5H 4SiMe3, C5H 5t-Bu, C5H 4Me). Formation mechanisms and theoretical (ELF) evidence for the existence of planar tetracoordinated carbon (ptC). Organometallics 19:1901–1911

    Article  CAS  Google Scholar 

  182. Bader RFW, Nguyen-Dang TT (1981) Quantum theory of atoms in molecules –dalton revisited in advances in quantum chemistry, vol 14. Academic Press, New York, pp 63–124

    Google Scholar 

  183. Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:9–15

    Article  CAS  Google Scholar 

  184. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford Univ Press, Oxford

    Google Scholar 

  185. Parr RG, v Szentpály L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–19246

    Article  CAS  Google Scholar 

  186. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091

    Article  CAS  PubMed  Google Scholar 

  187. Fuentealba P, Cardenas C, Pino-Rios R, Tiznado W (2016) Topological analysis of the Fukui function. In: Chauvin R, Lepetit C, Silvi B, Alikhani E (eds) Applications of topological methods in molecular chemistry. Springer International Publishing, Cham, pp 227–241

  188. Tognetti V, Morell C, Ayers PW, Joubert L, Chermette H (2013) A proposal for an extended dual descriptor: a possible solution when frontier molecular orbital theory fails. Phys Chem Chem Phys 15:14465–14475

    Article  CAS  PubMed  Google Scholar 

  189. Swain CG, Scott CB (1953) Quantitative correlation of relative rates. Comparison of hydroxide ion with other nucleophilic reagents toward alkyl halides, esters, epoxides and acyl halides1. J Am Chem Soc 75:141–147

    Article  CAS  Google Scholar 

  190. Ritchie CD (1972) Nucleophilic reactivities toward cations. Acc Chem Res 5:348–354

    Article  CAS  Google Scholar 

  191. Legon AC, Millen DJ (1987) Directional character, strength, and nature of the hydrogen bond in gas-phase dimers. Acc Chem Res 20:39–46

    Article  CAS  Google Scholar 

  192. Mayr H, Patz M (1994) Scales of nucleophilicity and electrophilicity: a system for ordering polar organic and organometallic reactions. Angew Chem Int Ed Engl 33:938– 957

    Article  Google Scholar 

  193. Phan TB, Breugst M, Mayr H (2006) Towards a general scale of nucleophilicity? Angew Chem Int Ed Engl 45:3869–3874

    Article  CAS  PubMed  Google Scholar 

  194. Jaramillo P, Pérez P, Contreras R, Tiznado W, Fuentealba P (2006) Definition of a nucleophilicity scale. J Phys Chem A 110:8181–8187

    Article  CAS  PubMed  Google Scholar 

  195. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  196. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  197. MacLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11-18. J Chem Phys 72:5639–5948

    Article  Google Scholar 

  198. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  199. Clark T, Chandrasekhar J, Spitznagel GW, von Ragué Schleyer P (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li–F. J Comput Chem 4:294

    Article  CAS  Google Scholar 

  200. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular-orbital methods. XXV: Supplementary functions for gaussian basis sets. J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  201. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  202. Kendall RA, Dunning TH Jr, Harrison RJ (1992) Electron affinities of the first -row atoms revisited. Systematic basis sets and wavefunctions. J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  203. Woon DE, Dunning Jr TH (1993) Gaussian-basis sets for use in correlated molecular calculations. 3. The atoms aluminum through argon. J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  204. Rice FO, Teller E (1938) The role of free radicals in elementary organic reactions. J Chem Phys 6:489–496

    Article  CAS  Google Scholar 

  205. Gillespie RJ, Popelier PLA (2001) Chemical bonding and molecular geometry. Oxford University Press, Oxford

    Google Scholar 

  206. Andres J, Berski S, Silvi B (2016) Curly arrows meet electron density transfers in chemical reaction mechanisms: from electron localization function (ELF,) analysis to valence-shell electron-pair repulsion (VSEPR) inspired interpretation. Chem Commun 52:8183–8195

    Article  CAS  Google Scholar 

  207. Legon AC, Millen DJ (1987) Angular geometries and other properties of hydrogen-bonded dimers: a simple electrostatic interpretation of the success of the electron-pair model. Chem Soc Rev 16:467–498

    Article  CAS  Google Scholar 

  208. Legon AC (1999) Prereactive complexes of dihalogens XY with lewis bases B in the gas phase: a systematic case for the halogen analogue B...XY of the hydrogen bond B...HX Angew. Chem Int Ed Engl 38:2686–2714

    Article  CAS  Google Scholar 

  209. Legon AC (2010) The halogen bond: an interim perspective. Phys Chem Chem Phys 12:7736–7747

    Article  CAS  PubMed  Google Scholar 

  210. Legon AC (2014) A reduced radial potential energy function for the halogen bond and the hydrogen bond in complexes B...XY and B...HX, where X and Y are halogen atoms. Phys Chem Chem Phys 16:12415–12421

    Article  CAS  PubMed  Google Scholar 

  211. Legon AC (2017) Tetrel, pnictogen and chalcogen bonds identified in the gas phase before they had names: a systematic look at non-covalent interactions. Phys Chem Chem Phys 19:14884–14896

    Article  CAS  PubMed  Google Scholar 

  212. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin R L, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision D.01. Gaussian Inc, Wallingford, p 2009

    Google Scholar 

  213. Noury S, Krokidis X, Fuster F, Silvi B (1999) Computational tools for the electron localization function topological analysis. Comput in Chem 23:597–604

    Article  CAS  Google Scholar 

  214. Noury S, Krokidis X, Fuster F, Silvi B (1997) TopMoD package

  215. Ahrens J, Geveci B, Law C (2005) ParaView: An end-user tool for large data visualization, visualization handbook. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Silvi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Zdzislaw Latajka 70th Birthday Festschrift

Guest Editors: Andrzej Sokalski and Slawomir Berski

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silvi, B., Alikhani, E. & Ratajczak, H. Towards an unified chemical model of secondary bonding. J Mol Model 26, 62 (2020). https://doi.org/10.1007/s00894-019-4283-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4283-1

Keywords

Navigation