Skip to main content
Log in

Theoretical study on simultaneous removal of SO2, NO, and Hg0 over graphene: competitive adsorption and adsorption type change

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, the influence of competitive adsorption and the change of charge transfer for simultaneous adsorption removal of SO2, NO, and Hg0 over graphene were investigated using density functional theory method. The results showed that all the adsorptive effect of SO2, NO, and Hg0 were caused by physical interaction. The adsorptive energy of SO2 was the highest, and the adsorptive energy of Hg0 was the lowest. SO2 could be preferentially adsorbed and removed. NO/SO2 and Hg0 had the mutual promotion effect for simultaneous adsorption over graphene surface. SO2 and NO had the mutual inhibition effect for simultaneous adsorption over graphene surface. Compared with single molecular adsorption, the adsorption type of bi-molecular adsorption did not change. However, the simultaneous adsorption changed the adsorption type of Hg0 + SO2 + NO to chemical adsorption due to the interaction among Hg0, SO2, and NO. As such, this study provides a theoretical insight for future application and development.

NO/SO2 and Hg0 had the mutual promotion effect for simultaneous adsorption. SO2 and NO had the mutual inhibition effect for simultaneous adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang S, Wang D, Liu H, Liu C, Xie X, Xu Z, Liu Z (2019) Highly stable activated carbon composite material to selectively capture gas-phase elemental mercury from smelting flue gas: copper polysulfide modification. Chem. Eng. J. 358:1235–1242

    Article  CAS  Google Scholar 

  2. Quan Z, Huang W, Liao Y, Liu W, Xu H, Yan N, Qu Z (2019) Study on the regenerable sulfur-resistant sorbent for mercury removal from nonferrous metal smelting flue gas. Fuel 241:451–458

    Article  CAS  Google Scholar 

  3. Liu W, Xu H, Liao Y, Quan Z, Li S, Zhao S, Qu Z, Yan N (2019) Recyclable CuS sorbent with large mercury adsorption capacity in the presence of SO2 from non-ferrous metal smelting flue gas. Fuel 235:847–854

    Article  CAS  Google Scholar 

  4. Sun Y, Ren S, Hou Y, Zhang K, Wu W (2018) Absorption of nitric oxide in simulated flue gas by a metallic functional ionic liquid. Fuel Process. Technol. 178:7–12

    Article  CAS  Google Scholar 

  5. Díaz-de-Mera Y, Aranda A, Martínez E, Rodríguez AA, Rodríguez D, Rodríguez A (2017) Formation of secondary aerosols from the ozonolysis of styrene: effect of SO2 and H2O. Atmos. Environ. 171:25–31

    Article  Google Scholar 

  6. Nava Núñez MY, Martínez-de la Cruz A (2018) Nitric oxide removal by action of ZnO photocatalyst hydrothermally synthesized in presence of EDTA. Mat Sci Semicon Proc 81:94–101

    Article  Google Scholar 

  7. He F, Deng X, Chen M (2017) Nitric oxide removal by combined urea and FeIIEDTA reaction systems. Chemosphere 168:623–629

    Article  CAS  Google Scholar 

  8. Zhou J, Cao L, Wang Q, Tariq M, Xue Y, Zhou Z, Sun W, Yang J (2019) Enhanced Hg0 removal via α-MnO2 anchored to MIL-96(Al). Appl. Surf. Sci. 483:252–259

    Article  CAS  Google Scholar 

  9. Liu Z, Adewuyi YG, Shi S, Chen H, Li Y, Liu D, Liu Y (2019) Removal of gaseous Hg0 using novel seaweed biomass-based activated carbon. Chem. Eng. J. 366:41–49

    Article  CAS  Google Scholar 

  10. Yu X, Hao J, Xi Z, Liu T, Lin Y, Xu B (2019) Investigation of low concentration SO2 adsorption performance on different amine-modified Merrifield resins. Atmos Pollut Res 10:404–411

    Article  CAS  Google Scholar 

  11. Chinh ND, Hien TT, Do Van L, Hieu NM, Quang ND, Lee SM, Kim C, Kim D (2019) Adsorption/desorption kinetics of nitric oxide on zinc oxide nano film sensor enhanced by light irradiation and gold-nanoparticles decoration. Sensors Actuat B 281:262–272

    Article  CAS  Google Scholar 

  12. Luo J, Niu Q, Jin M, Cao Y, Ye L, Du R (2019) Study on the effects of oxygen-containing functional groups on Hg0 adsorption in simulated flue gas by XAFS and XPS analysis. J. Hazard. Mater. 376:21–28

    Article  CAS  Google Scholar 

  13. Yang Y, Xu W, Wang J, Zhu T (2019) New insight into simultaneous removal of NO and Hg0 on CeO2-modified V2O5/TiO2 catalyst: a new modification strategy. Fuel 249:178–187

    Article  CAS  Google Scholar 

  14. Fang Z, Yu X, Tu ST (2019) Catalytic oxidation of NO on activated carbons. Energy Procedia 158:2366–2371

    Article  CAS  Google Scholar 

  15. Qing M, Su S, Wang L, Liu L, Xu K, He L, Jun X, Hu S, Wang Y, Xiang J (2019) Getting insight into the oxidation of SO2 to SO3 over V2O5-WO3/TiO2 catalysts: reaction mechanism and effects of NO and NH3. Chem. Eng. J. 361:1215–1224

    Article  CAS  Google Scholar 

  16. Yang Y, Liu J, Liu F, Wang Z, Ding J, Huang H (2019) Reaction mechanism for NH3-SCR of NOx over CuMn2O4 catalyst. Chem. Eng. J. 361:578–587

    Article  CAS  Google Scholar 

  17. Chen L, Wang X, Cong Q, Ma H, Li S, Li W (2019) Design of a hierarchical Fe-ZSM-5@CeO2 catalyst and the enhanced performances for the selective catalytic reduction of NO with NH3. Chem. Eng. J. 369:957–967

    Article  CAS  Google Scholar 

  18. Kwon DW, Kim J, Ha HP (2019) Establishment of surface/bulk-like species functionalization by controlling the sulfation temperature of Sb/V/Ce/Ti for NH3-SCR. Appl. Surf. Sci. 481:1503–1514

    Article  CAS  Google Scholar 

  19. Liu Y, Liu Z, Wang Y, Yin Y, Pan J, Zhang J, Wang Q (2018) Simultaneous absorption of SO2 and NO from flue gas using ultrasound/Fe2+/heat coactivated persulfate system. J. Hazard. Mater. 342:326–334

    Article  CAS  Google Scholar 

  20. Wu Q, Sun C, Wang H, Wang T, Wang Y, Wu Z (2018) The role and mechanism of triethanolamine in simultaneous absorption of NOx and SO2 by magnesia slurry combined with ozone gas-phase oxidation. Chem. Eng. J. 341:157–163

    Article  CAS  Google Scholar 

  21. Hao R, Mao Y, Mao X, Wang Z, Gong Y, Zhang Z, Zhao Y (2019) Cooperative removal of SO2 and NO by using a method of UV-heat/H2O2 oxidation combined with NH4OH-(NH4)2SO3 dual-area absorption. Chem. Eng. J. 365:282–290

    Article  CAS  Google Scholar 

  22. Wang H, You C (2018) Photocatalytic oxidation of SO2 on TiO2 and the catalyst deactivation: a kinetic study. Chem. Eng. J. 350:268–277

    Article  CAS  Google Scholar 

  23. Wang H, You C, Tan Z (2018) Enhanced photocatalytic oxidation of SO2 on TiO2 surface by Na2CO3 modification. Chem. Eng. J. 350:89–99

    Article  CAS  Google Scholar 

  24. Zhang AC, Zhang ZH, Shi JM, Chen GY, Zhou CS, Sun LS (2015) Effect of preparation methods on the performance of MnOx-TiO2 adsorbents for Hg0 removal and SO2 resistance. J. Fuel Chem. Technol. 43:1258–1266

    Article  CAS  Google Scholar 

  25. Gao L, Li C, Li S, Zhang W, Du X, Huang L, Zhu Y, Zhai Y, Zeng G (2019) Superior performance and resistance to SO2 and H2O over CoOx-modified MnOx/biomass activated carbons for simultaneous Hg0 and NO removal. Chem. Eng. J. 371:781–795

    Article  CAS  Google Scholar 

  26. Chiu CH, Kuo TH, Chang TC, Lin SF, Lin HP, Hsi HC (2017) Multipollutant removal of Hg0/SO2/NO from simulated coal-combustion flue gases using metal oxide/mesoporous SiO2 composites. Int. J. Coal Geol. 170:60–68

    Article  CAS  Google Scholar 

  27. Li B, Ma C (2018) Study on the mechanism of SO2 removal by activated carbon. Energy Procedia 153:471–477

    Article  CAS  Google Scholar 

  28. Wang Z, Jin H, Wang K, Xie Y, Ning J, Tu Y, Chen Y, Liu H, Zeng H (2019) A two-step method for the integrated removal of HCl, SO2 and NO at low temperature using viscose-based activated carbon fibers modified by nitric acid. Fuel 239:272–281

    Article  CAS  Google Scholar 

  29. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92:508–517

    Article  CAS  Google Scholar 

  30. Song X, Ning P, Li K, Sun X, Wang C, Sun L (2018) Hydrogen transfer effect and reaction mechanism for catalytic hydrolysis of HCN in ionic liquids: a density functional theory study. Chem. Eng. J. 348:630–636

    Article  CAS  Google Scholar 

  31. Song X, Ning P, Wang C, Li K, Tang L, Sun X (2017) Catalytic hydrolysis of COS over CeO2 (110) surface: a density functional theory study. Appl. Surf. Sci. 414:345–352

    Article  CAS  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys. Rev. Lett. 77:3865–3868

    Article  CAS  Google Scholar 

  33. Delley B (2000) From molecules to solids with the DMol3 approach. J. Chem. Phys. 113:7756–7764

    Article  CAS  Google Scholar 

  34. Song X, Wang C, Gasem KAM, Li K, Sun X, Ning P, Gong W, Wang T, Fan M, Sun L (2019) New insight into the reaction mechanism of carbon disulfide hydrolysis and the impact of H2S with density functional modeling. New J. Chem. 43:2347–2352

    Article  CAS  Google Scholar 

  35. Li K, Song X, Zhu T, Wang C, Sun X, Ning P, Tang L (2018) Mechanistic and kinetic study on the catalytic hydrolysis of COS in small clusters of sulfuric acid. Environ. Pollut. 232:615–623

    Article  CAS  Google Scholar 

  36. Song X, Sun L, Ning P, Wang C, Sun X, Li K, Fan M (2019) Catalytic synthesis of non-carbon fuel NH3 from easily available N2 and H2O over FeO(100) surface: study of reaction mechanism using the density functional theory. New J. Chem. 43:10066–10072

    Article  CAS  Google Scholar 

  37. Song X, Sun L, Guo H, Li K, Sun X, Wang C, Ning P (2019) Experimental and theoretical studies on the influence of carrier gas for COS catalytic hydrolysis over MgAlCe composite oxides. ACS Omega 4:7122–7127

    Article  CAS  Google Scholar 

  38. Ning P, Song X, Li K, Wang C, Tang L, Sun X (2017) Catalytic hydrolysis of carbonyl sulphide and carbon disulphide over Fe2O3 cluster: competitive adsorption and reaction mechanism. Sci. Rep. 7:14452

    Article  Google Scholar 

  39. Cottrell TL (1958) The strengths of chemical bondssecond edn. Butterworths Scientific Publications, London

  40. U.S. Dept. of Commerce (1970) National standard reference data series. National Bureau of Standards, Washington

  41. Abbasi A, Sardroodi JJ (2019) Adsorption of O3, SO2 and SO3 gas molecules on MoS2 monolayers: a computational investigation. Appl. Surf. Sci. 469:781–791

Download references

Funding

This work was supported by National Natural Science Foundation of China (51568067, 21667015, 41807373 and 51708266), Applied Basic Research Fund Project of Yunnan Province (2016FB100), National Key R&D Program of China (2018YFC0213400) and the Analysis and Testing Foundation of Kunming University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Song or Lijuan Jia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Li, K., Ning, P. et al. Theoretical study on simultaneous removal of SO2, NO, and Hg0 over graphene: competitive adsorption and adsorption type change. J Mol Model 25, 364 (2019). https://doi.org/10.1007/s00894-019-4254-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4254-6

Keywords

Navigation