RgnBe3B3+: theoretical investigation of Be3B3+ and its rare gas capability

Abstract

A series of Be3B3+ and its rare gas (Rg) containing complexes RgnBe3B3+ (Rg = He–Rn, n = 1–6) have been predicted theoretically using the B3LYP, MP2, and CCSD(T) methods to explore structures, stability, charge distributions, and nature of bonding. Both Be3B3+ and RgBe3B3+ are the global minima on the potential energy surfaces. In the RgnBe3B3+ complexes, the dissociation energy drops with the increase in number of Rg. Natural bond orbital (NBO) and topological analysis of the electron density (AIM) show that the Rg–Be bonds for Kr–Rn have some covalent character. The Rg–Be bond is stabilized dominantly by the Rg → Be3B3+ σ-donation from the valence p orbital of Rg to the vacant valence LUMO orbital of Rgn-1Be3B3+. Besides, other two π-donations also play important roles in stabilizing the Rg–Be bonds.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Khriachtchev L, Pettersson M, Lignell A, Räsänen M (2001) A more stable configuration of HArF in solid argon. J Am Chem Soc 123:8610–8611

    CAS  PubMed  Google Scholar 

  2. 2.

    Lundell J, Khriachtchev L, Pettersson M, Räsänen M (2000) Formation and characterization of neutral krypton and xenon hydrides in low-temperature matrices. Low Temp Phys 26:680–690

    CAS  Google Scholar 

  3. 3.

    Tanskanen H, Khriachtchev L, Lundell J, Kiljunen H, Räsänen M (2003) Chemical compounds formed from diacetylene and rare-gas atoms: HKrC4H and HXeC4H. J Am Chem Soc 125:16361–16366

    CAS  PubMed  Google Scholar 

  4. 4.

    Khriachtchev L, Lundell J, Tanskanen H, Cohen A, Gerber RB, Lundell J, Pettersson M, Kiljunen H, Räsänen M (2003) A gate to organokrypton chemistry: HKrCCH. J Am Chem Soc 125:6876–6877

    CAS  PubMed  Google Scholar 

  5. 5.

    Jana G, Pan S, Osorio E, Zhao L, Merino G, Chattaraj PK (2018) Cyanide–isocyanide isomerization: stability and bonding in noble gas inserted metal cyanides (metal = Cu, Ag, Au). Phys Chem Chem Phys 20:18491–18502

    CAS  PubMed  Google Scholar 

  6. 6.

    Pan S, Jana G, Ravell E, Zarate X, Osorio E, Merino G, Chattaraj PK (2018) Stable NCNgNSi (Ng=Kr, Xe, Rn) compounds with covalently bound C-Ng-N unit: possible isomerization of NCNSi through the release of the noble gas atom. Chem Eur J 24:2879–2887

    CAS  PubMed  Google Scholar 

  7. 7.

    Pan S, Saha R, Chattaraj PK (2015) Exploring the nature of silicon-noble gas bonds in H3SiNgNSi and HSiNgNSi compounds (Ng = Xe, Rn). Int J Mol Sci 16(3):6402–6418

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Pan S, Gupta A, Mandal S, Moreno D, Merino G, Chattaraj PK (2015) Metastable behavior of noble gas inserted tin and lead fluorides. Phys Chem Chem Phys 17:972–982

    CAS  PubMed  Google Scholar 

  9. 9.

    Juarez R, Zavala-Oseguera C, Jimenez-Halla JOC, Bickelhaupt FM, Merino G (2011) Radon hydrides: structure and bonding. Phys Chem Chem Phys 13:2222–2227

    CAS  PubMed  Google Scholar 

  10. 10.

    Pérez-Peralta N, Juárez R, Cerpa E, Bickelhaupt FM, Merino G (2009) Bonding of xenon hydrides. J Phys Chem A 113:9700–9706

    PubMed  Google Scholar 

  11. 11.

    Thompson CA, Andrews L (1994) Noble gas complexes with BeO: Infrared spectra of NG-BeO (NG = Ar, Kr, Xe). J Am Chem Soc 116:423–424

    CAS  Google Scholar 

  12. 12.

    Zhang Q, Chen M, Zhou M, Andrada DM, Frenking G (2015) Experimental and theoretical studies of the infrared spectra and bonding properties of NgBeCO3 and a comparison with NgBeO (Ng = He, Ne, Ar, Kr, Xe). J Phys Chem A 119:2543–2552

    CAS  PubMed  Google Scholar 

  13. 13.

    Saha R, Pan S, Merino G, Chattaraj PK (2015) Comparative study on the noble-gas binding ability of BeX clusters (X = SO4, CO3, O). J Phys Chem A 119:6746–6752

    CAS  PubMed  Google Scholar 

  14. 14.

    Pan S, Ghara M, Ghosh S, Chattaraj PK (2016) Noble gas bound beryllium chromate and beryllium hydrogen phosphate: a comparison with noble gas bound beryllium oxide. RSC Adv 6:92786–92794

    CAS  Google Scholar 

  15. 15.

    Pan S, Moreno D, Cabellos J, Romero J, Reyes A, Merino G, Chattaraj PK (2014) In quest of strong Be-Ng bonds among the neutral Ng-Be complexes. J Phys Chem A 118:487–494

    CAS  PubMed  Google Scholar 

  16. 16.

    Saha R, Pan S, Chattaraj PK (2017) NgMCp+: noble gas bound half-sandwich complexes (Ng = He-Rn, M = Be-Ba, Cp = η5-C5H5). J Phys Chem A 121:3526–3539

    CAS  PubMed  Google Scholar 

  17. 17.

    Pan S, Saha R, Chattaraj PK (2015) On the stability of noble gas bound 1-tris(pyrazolyl)borate beryllium and magnesium complexes. New J Chem 39:6778–6786

    CAS  Google Scholar 

  18. 18.

    Pan S, Moreno D, Cabellos JL, Merino G, Chattaraj PK (2014) Ab initio study on the stability of NgnBe2N2, NgnBe3N2 and NgBeSiN2 clusters. ChemPhysChem 15:2618–2625

    CAS  PubMed  Google Scholar 

  19. 19.

    Pan S, Jalife S, Kumar RM, Subramanian V, Merino G, Chattaraj PK (2013) Structure and stability of (NG)nCN3Be3 + clusters and comparison with (NG)BeY0/+. ChemPhysChem 14:2511–2517

    CAS  PubMed  Google Scholar 

  20. 20.

    Pan S, Jana G, Merino G, Chattaraj PK (2019) Noble-noble strong union: gold at its best to make a bond with a noble gas atom. ChemistryOpen 8:173–187

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Li ZZ, Li AY, Ji LF (2015) Theoretical predictions of C3v symmetric three-H-bridged noble gas compounds NgBeH3BeR, NgBeH3BR+ and NgBH3BR2+. J Phys Chem A 119:8400–8413

    CAS  PubMed  Google Scholar 

  22. 22.

    Li ZZ, Li AY (2017) Monocyclic aromatic compounds BnRgn (n-2)+ of boron and rare gases. Phys Chem Chem Phys 19:19109–19119

    CAS  PubMed  Google Scholar 

  23. 23.

    Saha R, Pan S, Mandal S, Orozco M, Merino G, Chattaraj PK (2016) Noble gas supported B3 + cluster: formation of strong covalent noble gas–boron bonds. RSC Adv 6:78611–78620

    CAS  Google Scholar 

  24. 24.

    Li ZZ, Li AY (2018) B4Rgn 2+ (Rg=He ~ Rn, n = 1–4): In quest of the potential trapping ability of the aromatic B4 2+ ring. Int J Quantum Chem 118:e25530

    Google Scholar 

  25. 25.

    Huang YH, Li ZZ, Li AY (2017) Hexagonal boron-noble gas compounds B6Ngn 4+: Structures and bonding. Chem Phys Lett 689:82–91

    CAS  Google Scholar 

  26. 26.

    Wang Y, Lv J, Zhu L, Ma Y (2012) CALYPSO: A method for crystal structure prediction. Comput Phys Commun 183:2063–2070

    CAS  Google Scholar 

  27. 27.

    Lv J, Wang Y, Zhu L, Ma Y (2012) Particle-swarm structure prediction on clusters. J Chem Phys 137:084104

    PubMed  Google Scholar 

  28. 28.

    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    CAS  Google Scholar 

  29. 29.

    Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206

    CAS  Google Scholar 

  30. 30.

    Dunning Jr TH, Hay PJ (1977) Modern theoretical chemistry. Plenum, New York

    Google Scholar 

  31. 31.

    Frisch, MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, et al (2009) Gaussian 09, Revision A.02, Gaussian, INC, Wallingford

  32. 32.

    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    CAS  PubMed  Google Scholar 

  33. 33.

    Pople JA, Head-Gordon M, Raghavachari K (1987) Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys 87:5968–5975

    CAS  Google Scholar 

  34. 34.

    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Rappoport D, Furche F (2010) Property-optimized gaussian basis sets for molecular response calculations. J Chem Phys 133:134105

    PubMed  Google Scholar 

  36. 36.

    Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) Systematically convergent basis sets with relativistic pseudopotentials. II. small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J Chem Phys 119:11113–11123

    CAS  Google Scholar 

  37. 37.

    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    CAS  Google Scholar 

  38. 38.

    Reed AE, Weinhold F, Curtiss LA, Pochatko DJ (1986) Natural bond orbital analysis of molecular interactions: theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3. J Chem Phys 84:5687–5705

    CAS  Google Scholar 

  39. 39.

    Keith TA (2013) AIMAll (version13.10.19), TK Gristmill Software. Overland Park.

  40. 40.

    Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Google Scholar 

  41. 41.

    Mitoraj MP, Michalak A, Ziegler TA (2009) A combined charge and energy decomposition scheme for bond analysis. J Chem Theory Comput 5:962–975

    CAS  PubMed  Google Scholar 

  42. 42.

    Baerends EJ et al (2013) ADF2013.01, SCM. Theoretical chemistry, Vrije Universiteit, Amsterdam

  43. 43.

    Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, Gisbergen SJAV, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967

    Google Scholar 

  44. 44.

    Guerra CF, Snijders JG, Velde GT, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Acc 99:391–403

    CAS  Google Scholar 

  45. 45.

    Cordero B, Gómez V, Platero-Prats AE, Revés M, Echeverría J, Cremades E, Barragán F, Alvarez S (2008) Covalent radii revisited. Dalton Trans 21:2832–2838

    Google Scholar 

  46. 46.

    Pyykkö P, Atsumi M (2009) Molecular single-bond covalent radii for elements 1–118. Chem Eur J 15:186–197

    PubMed  Google Scholar 

Download references

Funding

This work was supported by innovation foundation of Chongqing City for postgraduate (No. CYB18096).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhuo Zhe Li or An Yong Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1676 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z.Z., Wen, M. & Li, A.Y. RgnBe3B3+: theoretical investigation of Be3B3+ and its rare gas capability. J Mol Model 25, 349 (2019). https://doi.org/10.1007/s00894-019-4248-4

Download citation

Keywords

  • Bonding
  • Stability
  • Boron
  • EDA
  • NBO