Journal of Molecular Modeling

, 25:349 | Cite as

RgnBe3B3+: theoretical investigation of Be3B3+ and its rare gas capability

  • Zhuo Zhe LiEmail author
  • Mei Wen
  • An Yong LiEmail author
Original Paper


A series of Be3B3+ and its rare gas (Rg) containing complexes RgnBe3B3+ (Rg = He–Rn, n = 1–6) have been predicted theoretically using the B3LYP, MP2, and CCSD(T) methods to explore structures, stability, charge distributions, and nature of bonding. Both Be3B3+ and RgBe3B3+ are the global minima on the potential energy surfaces. In the RgnBe3B3+ complexes, the dissociation energy drops with the increase in number of Rg. Natural bond orbital (NBO) and topological analysis of the electron density (AIM) show that the Rg–Be bonds for Kr–Rn have some covalent character. The Rg–Be bond is stabilized dominantly by the Rg → Be3B3+ σ-donation from the valence p orbital of Rg to the vacant valence LUMO orbital of Rgn-1Be3B3+. Besides, other two π-donations also play important roles in stabilizing the Rg–Be bonds.


Bonding Stability Boron EDA NBO 


Funding information

This work was supported by innovation foundation of Chongqing City for postgraduate (No. CYB18096).

Supplementary material

894_2019_4248_MOESM1_ESM.docx (1.6 mb)
ESM 1 (DOCX 1676 kb)


  1. 1.
    Khriachtchev L, Pettersson M, Lignell A, Räsänen M (2001) A more stable configuration of HArF in solid argon. J Am Chem Soc 123:8610–8611PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Lundell J, Khriachtchev L, Pettersson M, Räsänen M (2000) Formation and characterization of neutral krypton and xenon hydrides in low-temperature matrices. Low Temp Phys 26:680–690CrossRefGoogle Scholar
  3. 3.
    Tanskanen H, Khriachtchev L, Lundell J, Kiljunen H, Räsänen M (2003) Chemical compounds formed from diacetylene and rare-gas atoms: HKrC4H and HXeC4H. J Am Chem Soc 125:16361–16366PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Khriachtchev L, Lundell J, Tanskanen H, Cohen A, Gerber RB, Lundell J, Pettersson M, Kiljunen H, Räsänen M (2003) A gate to organokrypton chemistry: HKrCCH. J Am Chem Soc 125:6876–6877PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Jana G, Pan S, Osorio E, Zhao L, Merino G, Chattaraj PK (2018) Cyanide–isocyanide isomerization: stability and bonding in noble gas inserted metal cyanides (metal = Cu, Ag, Au). Phys Chem Chem Phys 20:18491–18502PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Pan S, Jana G, Ravell E, Zarate X, Osorio E, Merino G, Chattaraj PK (2018) Stable NCNgNSi (Ng=Kr, Xe, Rn) compounds with covalently bound C-Ng-N unit: possible isomerization of NCNSi through the release of the noble gas atom. Chem Eur J 24:2879–2887PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Pan S, Saha R, Chattaraj PK (2015) Exploring the nature of silicon-noble gas bonds in H3SiNgNSi and HSiNgNSi compounds (Ng = Xe, Rn). Int J Mol Sci 16(3):6402–6418PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Pan S, Gupta A, Mandal S, Moreno D, Merino G, Chattaraj PK (2015) Metastable behavior of noble gas inserted tin and lead fluorides. Phys Chem Chem Phys 17:972–982PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Juarez R, Zavala-Oseguera C, Jimenez-Halla JOC, Bickelhaupt FM, Merino G (2011) Radon hydrides: structure and bonding. Phys Chem Chem Phys 13:2222–2227PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Pérez-Peralta N, Juárez R, Cerpa E, Bickelhaupt FM, Merino G (2009) Bonding of xenon hydrides. J Phys Chem A 113:9700–9706PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Thompson CA, Andrews L (1994) Noble gas complexes with BeO: Infrared spectra of NG-BeO (NG = Ar, Kr, Xe). J Am Chem Soc 116:423–424CrossRefGoogle Scholar
  12. 12.
    Zhang Q, Chen M, Zhou M, Andrada DM, Frenking G (2015) Experimental and theoretical studies of the infrared spectra and bonding properties of NgBeCO3 and a comparison with NgBeO (Ng = He, Ne, Ar, Kr, Xe). J Phys Chem A 119:2543–2552PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Saha R, Pan S, Merino G, Chattaraj PK (2015) Comparative study on the noble-gas binding ability of BeX clusters (X = SO4, CO3, O). J Phys Chem A 119:6746–6752PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Pan S, Ghara M, Ghosh S, Chattaraj PK (2016) Noble gas bound beryllium chromate and beryllium hydrogen phosphate: a comparison with noble gas bound beryllium oxide. RSC Adv 6:92786–92794CrossRefGoogle Scholar
  15. 15.
    Pan S, Moreno D, Cabellos J, Romero J, Reyes A, Merino G, Chattaraj PK (2014) In quest of strong Be-Ng bonds among the neutral Ng-Be complexes. J Phys Chem A 118:487–494PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Saha R, Pan S, Chattaraj PK (2017) NgMCp+: noble gas bound half-sandwich complexes (Ng = He-Rn, M = Be-Ba, Cp = η5-C5H5). J Phys Chem A 121:3526–3539PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Pan S, Saha R, Chattaraj PK (2015) On the stability of noble gas bound 1-tris(pyrazolyl)borate beryllium and magnesium complexes. New J Chem 39:6778–6786CrossRefGoogle Scholar
  18. 18.
    Pan S, Moreno D, Cabellos JL, Merino G, Chattaraj PK (2014) Ab initio study on the stability of NgnBe2N2, NgnBe3N2 and NgBeSiN2 clusters. ChemPhysChem 15:2618–2625PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Pan S, Jalife S, Kumar RM, Subramanian V, Merino G, Chattaraj PK (2013) Structure and stability of (NG)nCN3Be3 + clusters and comparison with (NG)BeY0/+. ChemPhysChem 14:2511–2517PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Pan S, Jana G, Merino G, Chattaraj PK (2019) Noble-noble strong union: gold at its best to make a bond with a noble gas atom. ChemistryOpen 8:173–187PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Li ZZ, Li AY, Ji LF (2015) Theoretical predictions of C3v symmetric three-H-bridged noble gas compounds NgBeH3BeR, NgBeH3BR+ and NgBH3BR2+. J Phys Chem A 119:8400–8413PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Li ZZ, Li AY (2017) Monocyclic aromatic compounds BnRgn (n-2)+ of boron and rare gases. Phys Chem Chem Phys 19:19109–19119PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Saha R, Pan S, Mandal S, Orozco M, Merino G, Chattaraj PK (2016) Noble gas supported B3 + cluster: formation of strong covalent noble gas–boron bonds. RSC Adv 6:78611–78620CrossRefGoogle Scholar
  24. 24.
    Li ZZ, Li AY (2018) B4Rgn 2+ (Rg=He ~ Rn, n = 1–4): In quest of the potential trapping ability of the aromatic B4 2+ ring. Int J Quantum Chem 118:e25530CrossRefGoogle Scholar
  25. 25.
    Huang YH, Li ZZ, Li AY (2017) Hexagonal boron-noble gas compounds B6Ngn 4+: Structures and bonding. Chem Phys Lett 689:82–91CrossRefGoogle Scholar
  26. 26.
    Wang Y, Lv J, Zhu L, Ma Y (2012) CALYPSO: A method for crystal structure prediction. Comput Phys Commun 183:2063–2070CrossRefGoogle Scholar
  27. 27.
    Lv J, Wang Y, Zhu L, Ma Y (2012) Particle-swarm structure prediction on clusters. J Chem Phys 137:084104PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  29. 29.
    Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206CrossRefGoogle Scholar
  30. 30.
    Dunning Jr TH, Hay PJ (1977) Modern theoretical chemistry. Plenum, New YorkGoogle Scholar
  31. 31.
    Frisch, MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, et al (2009) Gaussian 09, Revision A.02, Gaussian, INC, WallingfordGoogle Scholar
  32. 32.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Pople JA, Head-Gordon M, Raghavachari K (1987) Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys 87:5968–5975CrossRefGoogle Scholar
  34. 34.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Rappoport D, Furche F (2010) Property-optimized gaussian basis sets for molecular response calculations. J Chem Phys 133:134105PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) Systematically convergent basis sets with relativistic pseudopotentials. II. small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J Chem Phys 119:11113–11123CrossRefGoogle Scholar
  37. 37.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  38. 38.
    Reed AE, Weinhold F, Curtiss LA, Pochatko DJ (1986) Natural bond orbital analysis of molecular interactions: theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3. J Chem Phys 84:5687–5705CrossRefGoogle Scholar
  39. 39.
    Keith TA (2013) AIMAll (version13.10.19), TK Gristmill Software. Overland Park.Google Scholar
  40. 40.
    Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Mitoraj MP, Michalak A, Ziegler TA (2009) A combined charge and energy decomposition scheme for bond analysis. J Chem Theory Comput 5:962–975PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Baerends EJ et al (2013) ADF2013.01, SCM. Theoretical chemistry, Vrije Universiteit, AmsterdamGoogle Scholar
  43. 43.
    Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, Gisbergen SJAV, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967CrossRefGoogle Scholar
  44. 44.
    Guerra CF, Snijders JG, Velde GT, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Acc 99:391–403Google Scholar
  45. 45.
    Cordero B, Gómez V, Platero-Prats AE, Revés M, Echeverría J, Cremades E, Barragán F, Alvarez S (2008) Covalent radii revisited. Dalton Trans 21:2832–2838CrossRefGoogle Scholar
  46. 46.
    Pyykkö P, Atsumi M (2009) Molecular single-bond covalent radii for elements 1–118. Chem Eur J 15:186–197PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations