Skip to main content

Advertisement

Log in

Adsorption of carbon dioxide and ammonia in transition metal–doped boron nitride nanotubes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory calculations were carried out to analyze the performance of single-walled boron nitride nanotubes (BNNT) doped with Ni, Pd, and Pt as a sensor of CO2 and NH3. Binding energies, equilibrium distances, charge transference, and molecular orbitals, as well as the density of states, are used to study the adsorption mechanism of the gas species on the surface of the nanotube. Our results suggest a considerable rise in the adsorption potential of BNNTs when the doping scheme is employed, as compared with adsorption in pristine nanotubes. Ni-doped nanotubes are observed to be the best candidates for adsorption of both carbon dioxide and ammonia.

Molecular orbitals distribution for CO2 adsorption on a Boron Nitride Nanotube

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) . Science 287 (5453):622

    CAS  PubMed  Google Scholar 

  2. Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K (2007) . Nat Mater 6(9):652

    CAS  PubMed  Google Scholar 

  3. Collins PG, Bradley K, Ishigami M, Zettl dA (2000) . Science 287(5459):1801

    CAS  PubMed  Google Scholar 

  4. Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) . Nature 415(6872):617

    CAS  PubMed  Google Scholar 

  5. Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) . Nano Lett 3(7):929

    CAS  Google Scholar 

  6. Wang R, Zhu R, Zhang D (2008) . Chem Phys Lett 467(1-3):131

    CAS  Google Scholar 

  7. Han WQ, Zettl A (2003) . J Am Chem Soc 125(8):2062

    CAS  PubMed  Google Scholar 

  8. Kalay S, Yilmaz Z, Sen O, Emanet M, Kazanc E, Çulha M (2015) . Beilstein J Nanotechnol 6(1):84

    PubMed  PubMed Central  Google Scholar 

  9. Ciofani G (2010) . Expert Opin Drug Deliv 7(8):889

    CAS  PubMed  Google Scholar 

  10. Salvetti A, Rossi L, Iacopetti P, Li X, Nitti S, Pellegrino T, Mattoli V, Golberg D, Ciofani G (2015) . Nanomedicine 10(12):1911

    CAS  PubMed  Google Scholar 

  11. Xue Y, Jiang B, Bourgeois L, Dai P, Mitome M, Zhang C, Yamaguchi M, Matveev A, Tang C, Bando Y et al (2015) . Mater Des 88:451

    Google Scholar 

  12. Ciofani G, Danti S, D’Alessandro D, Ricotti L, Moscato S, Bertoni G, Falqui A, Berrettini S, Petrini M, Mattoli V et al (2010) . ACS Nano 4(10):6267

    CAS  PubMed  Google Scholar 

  13. Song X, Hu J, Zeng H (2013) . J Mater Chem C 1(17):2952

    CAS  Google Scholar 

  14. Peyghan AA, Soltani A, Pahlevani AA, Kanani Y, Khajeh S (2013) . Appl Surf Sci 270:25

    CAS  Google Scholar 

  15. Chopra NG, Luyken R, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) . Science 269(5226):966

    CAS  PubMed  Google Scholar 

  16. Froudakis GE (2011) . Mater Today 14(7-8):324

    CAS  Google Scholar 

  17. Zhang F, Zhao P, Niu M, Maddy J (2016) . Int J Hydrogen Energy 41(33):14535

    CAS  Google Scholar 

  18. Pradhan BK, Sumanasekera GU, Adu KW, Romero HE, Williams KA, Eklund PC (2002) . Physica B: Condensed Matter 323(1-4):115

    CAS  Google Scholar 

  19. Tanaka H, El-Merraoui M, Steele W, Kaneko K (2002) . Chem Phys Lett 352(5-6):334

    CAS  Google Scholar 

  20. Delavar M, Ghoreyshi A, Jahanshahi M, Nabian N (2014) . J Exp Nanosci 9(3):310

    CAS  Google Scholar 

  21. Esrafili MD, Behzadi H (2013) . Struct Chem 24(2):573

    CAS  Google Scholar 

  22. Deng ZY, Zhang JM, Xu KW (2015) . Appl Surf Sci 347:485

    CAS  Google Scholar 

  23. Chen X, Dmuchowski CM, Park C, Fay CC, Ke C (2017) . Sci Rep 7(1):11388

    PubMed  PubMed Central  Google Scholar 

  24. Fine GF, Cavanagh LM, Afonja A, Binions R (2010) . Sensors 10(6):5469

    CAS  PubMed  Google Scholar 

  25. Gomes F, Dmitriev V, Nascimento C (2014) . J Microwaves Optoelectron Electromagn Appl 13(2):214

    Google Scholar 

  26. Tavangar Z, Hamadanian M, Basharnavaz H (2017) . Chem Phys Lett 669:29

    CAS  Google Scholar 

  27. Habibi-Yangjeh A, Basharnavaz H (2018) . Mol Phys 116(10):1320

    CAS  Google Scholar 

  28. Prajesh R, Goyal V, Bhargava J, Sharma A, Agarwal A (2017) . Microsyst Technol 23(8):3027

    CAS  Google Scholar 

  29. Delley B (1990) . J Chem Phys 92(1):508

    CAS  Google Scholar 

  30. Delley B (2000) . J Chem Phys 113(18):7756

    CAS  Google Scholar 

  31. Andzelm J, Kölmel C, Klamt A (1995) . J Chem Phys 103(21):9312

    CAS  Google Scholar 

  32. Delley B (2002) . Phys Rev B 66:155125

    Google Scholar 

  33. Smith DGA, Patkowski K (2015) . J Chem Phys C 119:4934

    CAS  Google Scholar 

  34. Li W, Li GQ, Lu XM, Ma JJ, Zeng PY, He QY, Wang YZ (2016) . Chem Phys Lett 658:162

    CAS  Google Scholar 

  35. Li W, Ma JJ, Liu P, Pan ZL, He QY (2015) . App Surf Sci 335:17

    CAS  Google Scholar 

  36. Li W, Lu XM, Li GQ, Ma JJ, Zeng PY, Chen JF, Pan ZL, He QY (2016) . App Surf Sci 364:560

    CAS  Google Scholar 

  37. Mahdavifar Z, Abbasi N, Shakerzadeh E (2013) . Sensors Actuat 185:512

    CAS  Google Scholar 

  38. Zhang Y, Liu Y, Meng Z, Ning C, Xiao C, Deng K, Jena P, Lu R (2018) . Phys Chem Chem Phys 20:17599

    CAS  PubMed  Google Scholar 

  39. Dandeliya S, Srivastava A (2015) 2015 IEEE international symposium on nanoelectronic and information systems, pp 268–271

  40. Chermahini AN, Teimouri A (2017) . J Chin Chem Soc 64:250

    Google Scholar 

  41. Santucci S, Picozzi S, Gregorio FD, Lozzi L, Cantalini C, Valentini L, Kenny JM, Delley B (2003) . J Chem Phys 119:10904

    CAS  Google Scholar 

  42. Monkhorst HJ, Pack JD (1976) . Phys Rev B 13:5188

    Google Scholar 

  43. Paura ENC, da Cunha WF, Roncaratti LF, Martins JBL, e Silva GM, Gargano R (2015) . RSC Adv 5:27412

    Google Scholar 

  44. Nguyen TTH, Le VK, Minh CL, Nguyen NH (2017) . Comp Theo Chem 1100:46

    CAS  Google Scholar 

  45. Tontapha S, Wanno B, Amorkitabamrung V, Sang-Aroon W (2015) . Mah Int J Eng Tech 1:16

    Google Scholar 

  46. Paura ENC, da Cunha WF, de Oliveira Neto PH, e Silva GM, Martins JBL, Gargano R (2013) . J Phys Chem A 117:2854

    CAS  PubMed  Google Scholar 

  47. Paura ENC, da Cunha WF, Martins JBL, e Silva GM, Roncaratti LF, Gargano R (2014) . RSC Adv 4:28249

    CAS  Google Scholar 

  48. Ahmadi A, Beheshtian J, Hadipour NL (2011) . Struc Chem 22:183

    CAS  Google Scholar 

  49. Wu X, An W, Zeng XC (2006) . J Amer Chem Soc 128:12001

    CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support from the Brazilian Research Councils CNPq and CAPES as well as CENAPAD-SP for providing the computational facilities. L.A.R.J. gratefully acknowledges the financial support from the Brazilian Research Council FAPDF grant 0193.001511/2017 as well as the Brazilian Ministry of Planning, Budget and Management (Grant DIPLA 005/2016). B.G.E., F.F.M., and W.F.C. also thank FAPDF for grants 0193.001556/2017, 0193.001234/2016, and 0193.001694/2017. L.A.R.J. gratefully acknowledge the financial support from CNPq grant 302236/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Antonio Ribeiro Jr.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to the Topical Collection VII Symposium on Electronic Structure and Molecular Dynamics – VII SeedMol

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 4.78 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, K.A.L., Cunha, W.F.d., Monteiro, F.F. et al. Adsorption of carbon dioxide and ammonia in transition metal–doped boron nitride nanotubes. J Mol Model 25, 359 (2019). https://doi.org/10.1007/s00894-019-4235-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4235-9

Keywords

Navigation