Skip to main content
Log in

How water affects mercury–halogen interaction in the atmosphere

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The solvation of mercury and halogens ions in water is essential for studying the reaction kinetics of various mercury depletion reactions in the atmosphere. Here, we use two approaches. The first one is the implementation of transition state theory to study the recombination reactions of Hg2+and Hal with the introduction of a water molecule as a third body part. The inclusion of solvation corrections to the total energy enables one to localize the barrier for such diatomic systems with explicit water molecule participation. The second approach is the molecular modeling of three mercuric halide ion pairs in water complexes [HgHal(H2O)n]+ (Hal = Cl, Br, I) by using the semiempirical tight-binding molecular dynamics combined with density functional theory calculations. Various [Hg-Hal]+ ion pairs behave similarly when hydrated and tend to adopt clathrate-like configurations with a [Hg2+(H2O)6] central motif and halogen ions residing on the external surface of the water complex. Contact ion pairs are energetically favorable for all complexes up to 50 water molecules. Further increase in the level of hydration stabilized the solvent-separated forms of [Hg-Hal]+ ion pairs, which matches the water affinity rule. The balance between the contact and the solvated ion pairs was shown to be ion-pair specific and temperature dependent.

The structure of stable water complexes of mercury halides reflects the competition between water-water, Hg2+ -water, and Hal -water interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ariya P. A., Peterson K., Snider, G. & Amyot, M. Mercury chemical transformations in the gas, aqueous and heterogeneous phases: state-of-the-art science and uncertainties. in Mercury Fate and Transport in the Global Atmosphere 459–501 (Springer US, 2009). https://doi.org/10.1007/978-0-387-93958-2_15

    Chapter  Google Scholar 

  2. Lin C., Singhasuk, P. & Pehkonen S. Environmental chemistry and toxicology of mercury. (John Wiley & Sons, Inc., 2012)

  3. Spicer CW et al (2002) Molecular halogens before and during ozone depletion events in the Arctic at polar sunrise: concentrations and sources. Atmos. Environ. 36:2721–2731

    Article  CAS  Google Scholar 

  4. Barrie LA, Bottenheim JW, Schnell RC, Crutzen PJ, Rasmussen RA (1988) Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. Nature 334:138–141

    Article  CAS  Google Scholar 

  5. Boudries H, Bottenheim JW (2000) Cl and Br atom concentrations during a surface boundary layer ozone depletion event in the Canadian High Arctic. Geophys. Res. Lett. 27:517–520

    Article  CAS  Google Scholar 

  6. Lindberg SE et al (2002) Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise. Environ. Sci. Technol. 36:1245–1256

    Article  CAS  Google Scholar 

  7. Temme C, Einax JW, Ebinghaus R, Schroeder WH (2003) Measurements of atmospheric mercury species at a coastal site in the Antarctic and over the South Atlantic Ocean during polar summer. Environ. Sci. Technol. 37:22–31

    Article  CAS  Google Scholar 

  8. Skov H et al (2004) Fate of elemental mercury in the Arctic during atmospheric mercury depletion episodes and the load of atmospheric mercury to the Arctic. Environ. Sci. Technol. 38:2373–2382

    Article  CAS  Google Scholar 

  9. Gauchard P et al (2005) Study of the origin of atmospheric mercury depletion events recorded in Ny-Ålesund, Svalbard, spring 2003. Atmos. Environ. 39:7620–7632

    Article  CAS  Google Scholar 

  10. Lu JY et al (2001) Magnification of atmospheric mercury deposition to polar regions in springtime: the link to tropospheric ozone depletion chemistry. Geophys. Res. Lett. 28:3219–3222

    Article  CAS  Google Scholar 

  11. Lin CJ, Pehkonen SO (1998) Two-phase model of mercury chemistry in the atmosphere. Atmos Env. 32:2543–2558

    Article  CAS  Google Scholar 

  12. Hynes A. J., Donohoue D. L., Goodsite M. E. & Hedgecock I.M.. Our current understanding of major chemical and physical processes affecting mercury dynamics in the atmosphere and at the air-water/terrestrial interfaces. in Mercury fate and transport in the global atmosphere 427–457 (Springer, 2009)

  13. Castro L, Dommergue A, Ferrari C, Maron L (2009) A DFT study of the reactions of O-3 with Hg degrees or Br. Atmos. Environ. 43:5708–5711

    Article  CAS  Google Scholar 

  14. Khalizov A, Viswanathan B, Larregaray P, Ariya P (2003) A theoretical study on the reactions of Hg with halogens: atmospheric implications. J. Phys. Chem. A 107:6360–6365

    Article  CAS  Google Scholar 

  15. Munthe J (1992) The aqueous oxidation of elemental mercury by ozone. Atmos Env. A 26:1461–1468

    Article  Google Scholar 

  16. Lin CJ, Pehkonen SO (1997) Aqueous free radical chemistry of mercury in the presence of iron oxides and ambient aerosol. Atmos Env. 31:4125–4137

    Article  CAS  Google Scholar 

  17. Wang Z, Pehkonen SO (2004) Oxidation of elemental mercury by aqueous bromine: atmospheric implications. Atmos Env. 38:3675–3688

    Article  CAS  Google Scholar 

  18. Holmes CD, Jacob DJ, Yang X (2006) Global lifetime of elemental mercury against oxidation by atomic bromine in the free troposphere. Geophys. Res. Lett. 33(5)

  19. Shepler BC, Wright AD, Balabanov NB, Peterson KA (2007) Aqueous microsolvation of mercury halide species. J. Phys. Chem. A 111:11342–11349

    Article  CAS  Google Scholar 

  20. Maron L, Dommergue A, Ferrari C, Delacour-Larose M, Faïn X (2008) How elementary mercury reacts in the presence of halogen radicals and/or halogen anions: a DFT investigation. Chem. - A Eur. J. 14:8322–8329

    Article  CAS  Google Scholar 

  21. Majumdar D, Roszak S, Leszczynski J (2011) Probing the structures and thermodynamic characteristics of the environment polluting mercuric halides, cyanides and thiocyanates. Chem. Phys. Lett. 501:308–314

    Article  CAS  Google Scholar 

  22. Liu C-W et al (2014) Stable salt–water cluster structures reflect the delicate competition between ion–water and water–water interactions. J. Phys. Chem. B 118:743–751

    Article  CAS  Google Scholar 

  23. Grimme S, Bannwarth C, Shushkov P (2017) A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements ( Z = 1–86). J. Chem. Theory Comput. 13:1989–2009

    Article  CAS  Google Scholar 

  24. Frisch, M. J. et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT. (2009)

  25. Song Y, Akin-Ojo O, Wang F (2010) Correcting for dispersion interaction and beyond in density functional theory through force matching. J. Chem. Phys. 133:174115

    Article  Google Scholar 

  26. Schlegel HB (1982) Optimization of equilibrium geometries and transition structures. J. Comput. Chem. 3:214–218

    Article  CAS  Google Scholar 

  27. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comput. Chem. 17:49–56

    Article  CAS  Google Scholar 

  28. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor. Chem. Accounts 120:215–241

    Article  CAS  Google Scholar 

  29. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comp. Chem 24:669–681

    Article  CAS  Google Scholar 

  30. Marcus Y (2009) Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109:1346–1370

    Article  CAS  Google Scholar 

  31. Marcus Y (1991) Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K. J. Chem. Soc., Faraday Trans 87:2995–2999

    Article  CAS  Google Scholar 

  32. Collins KD (1997) Charge density-dependent strength of hydration and biological structure. Biophys. J. 72:65–76

    Article  CAS  Google Scholar 

Download references

Acknowledgments

U.S. Army Research Office ARO W911NF-16-1-0486 supported this work. We thank the Mississippi Center for Supercomputer Research (Oxford, MS, USA) for an allotment of computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetiana Zubatiuk.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to the Topical Collection Tim Clark 70th Birthday Festschrift

Electronic supplementary material

ESM 1

(DOCX 399 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubatiuk, T., Hill, G. & Leszczynski, J. How water affects mercury–halogen interaction in the atmosphere. J Mol Model 25, 357 (2019). https://doi.org/10.1007/s00894-019-4212-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4212-3

Keywords

Navigation