Skip to main content
Log in

Synergistic and antagonistic interplay between tetrel bond and pnicogen bond in complexes involving ring compounds

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The binary and ternary complexes composed of GeH3F, AsH2F and ring compounds (benzene, borazine and cyclopentadienyl anion) have been studied by theoretical calculations to understand the interplay between the tetrel bond and pnicogen bond interactions. The bonding strength of intermolecular interactions in these complexes is analyzed by means of atoms in molecules (AIM), natural bond orbital (NBO) and noncovalent interaction (NCI) index methods. The binary tetrel-bonded and pnicogen-bonded complexes can be classified as an n-type or π-type complex according to the orbital interactions involved in the complexes. Three binding modes can be distinguished according to the interplay between interactions for the ternary complexes. The binding mode A is characterized by the interplay between π-type tetrel bond and n-type pnicogen bond; binding mode B is characterized by the interplay between π-type pnicogen bond and n-type tetrel bond, and binding mode C is characterized by the interplay between π-type tetrel bond and π-type pnicogen bond. The binding modes A and B exhibit the synergistic interplay effect, while the antagonistic effect is reflected in mode C. The synergistic effect in binding modes A and B is stronger than antagonistic effect in mode C, and the synergistic effect in binding mode B is stronger than that in mode A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wheeler SE, Seguin TJ, Guan Y, Doney AC (2016). Acc. Chem. Res. 49:1061–1069

    CAS  PubMed  Google Scholar 

  2. Vallavoju N, Sivaguru J (2014). Chem. Soc. Rev. 43:4084–4101

    CAS  PubMed  Google Scholar 

  3. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016). Chem. Rev. 116:5464–5519

    CAS  PubMed  Google Scholar 

  4. Gilli G, Gilli P (2009) The nature of the hydrogen bond. Oxford University Press, Oxford

    Google Scholar 

  5. Politzer P, Murray JS, Clark T (2010). Phys. Chem. Chem. Phys. 12:7748–7757

    CAS  PubMed  Google Scholar 

  6. Sarwar MG, Dragisic B, Sagoo S, Taylor MS (2010). Chem. Int. Ed. 49:1674–1677

    CAS  Google Scholar 

  7. Kilah NL, Wise MD, Serpell CJ, Thompson AL, White NG, Christensen KE, Beer PD (2010). J. Am. Chem. Soc. 132:11893–11895

    CAS  PubMed  Google Scholar 

  8. Hernandes MZ, Cavalcanti SMT, Moreira DRM, de Azevedo Jr WF, Leite ACL (2010). Curr. Drug Targets 11:303–314

    CAS  PubMed  Google Scholar 

  9. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008). Angew. Chem. Int. Ed. 47:6114–6127

    CAS  Google Scholar 

  10. Politzer P, Murray JS, Concha MC (2007). J. Mol. Model. 13:643–650

    CAS  PubMed  Google Scholar 

  11. Clark T, Hennemann M, Murray JS, Politzer P (2007). J. Mol. Model. 13:291–296

    CAS  PubMed  Google Scholar 

  12. Politzer P, Murray JS, Clark T (2013). Phys. Chem. Chem. Phys. 15:11178–11189

    CAS  PubMed  Google Scholar 

  13. Bauzá A, Mooibroek TJ, Frontera A (2013). Angew. Chem. Int. Ed. 52:12317–12321

    Google Scholar 

  14. Murray JS, Lane P, Politzer P (2009). J. Mol. Model. 15:723–729

    CAS  PubMed  Google Scholar 

  15. Mani D, Arunan E (2014). J. Phys. Chem. A 118:10081–10089

    CAS  PubMed  Google Scholar 

  16. Li QZ, Guo X, Yang X, Li WZ, Cheng JB, Li HB (2014). Phys. Chem. Chem. Phys. 16:11617–11625

    CAS  PubMed  Google Scholar 

  17. Thomas SP, Pavan MS, Row TNG (2014). Chem. Commun. 50:49–51

    CAS  Google Scholar 

  18. McDowell SAC, Joseph JA (2014). Phys. Chem. Chem. Phys. 16:10854–10860

    CAS  PubMed  Google Scholar 

  19. Li QZ, Zhuo HY, Li HB, Liu ZB, Li WZ, Cheng JB (2015). J. Phys. Chem. A 119:2217–2224

    CAS  PubMed  Google Scholar 

  20. Southern SA, Bryce DL (2015). J. Phys. Chem. A 119:11891–11899

    CAS  PubMed  Google Scholar 

  21. Scheiner S (2015). J. Phys. Chem. A 119:9189–9199

    CAS  PubMed  Google Scholar 

  22. Azofra LM, Scheiner S (2015). J. Chem. Phys. 142:034307

    PubMed  Google Scholar 

  23. Bauzá A, Mooibroek TJ, Frontera A (2016). Chem. Rec. 16:473–487

    PubMed  Google Scholar 

  24. Bauzá A, Frontera A, Mooibroek TJ (2016). Phys. Chem. Chem. Phys. 18:1693–1698

    PubMed  Google Scholar 

  25. Liu MX, Li QZ, Li WZ, Cheng JB (2017). Struct. Chem. 28:823–831

    CAS  Google Scholar 

  26. Liu MX, Li QZ, Cheng JB, Li WZ, Li HB (2016). J. Chem. Phys. 145:224310

    PubMed  Google Scholar 

  27. Bene JED, Alkorta I, Elguero J (2017). J. Phys. Chem. A 121:8136–8146

    PubMed  Google Scholar 

  28. Liu MX, Li QZ, Scheiner S (2017). Phys. Chem. Chem. Phys. 19:5550–5559

    CAS  PubMed  Google Scholar 

  29. Legon AC (2017). Phys. Chem. Chem. Phys. 19:14884–14896

    CAS  PubMed  Google Scholar 

  30. Scheiner S (2018). J. Comput. Chem. 39:500–510

    CAS  PubMed  Google Scholar 

  31. Zierkiewicz W, Michalczyk M, Scheiner S (2018). Phys. Chem. Chem. Phys. 20:8832–8841

    CAS  PubMed  Google Scholar 

  32. Wei YX, Li QZ, Scheiner S (2018). ChemPhysChem 19:736–743

    CAS  PubMed  Google Scholar 

  33. Chen YS, Yao LF, Lin XF (2014). Comput. Theor. Chem. 1036:44–50

    CAS  Google Scholar 

  34. Wu JY, Yan H, Zhong AG, Chen H, Jin YX, Dai GL (2019). J. Mol. Model. 25:28

    PubMed  Google Scholar 

  35. Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011). Chem.-Eur. J. 17:6034–6038

    CAS  PubMed  Google Scholar 

  36. Solimannejad M, Gharabaghi M, Scheiner S (2011). J. Chem. Phys. 134:024312

    PubMed  Google Scholar 

  37. Scheiner S (2011). J. Chem. Phys. 134:094315

    PubMed  Google Scholar 

  38. Scheiner S (2011). J. Phys. Chem. A 115:11202–11209

    CAS  PubMed  Google Scholar 

  39. Li QZ, Li R, Liu XF, Li WZ, Cheng JB (2012). J. Phys. Chem. A 116:2547–2553

    CAS  PubMed  Google Scholar 

  40. Li QZ, Li R, Liu XF, Li WZ, Cheng JB (2012). ChemPhysChem 13:1205–1212

    CAS  PubMed  Google Scholar 

  41. Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2012). J. Phys. Chem. A 116:3056–3060

    PubMed  Google Scholar 

  42. Alkorta I, Sanchez-Sanz G, Elguero J, Del Bene JE, Chem J (2012). Theor. Comp. 8:2320–−2327

    CAS  Google Scholar 

  43. An XL, Li R, Li QZ, Liu XF, Li WZ, Cheng JB (2012). J. Mol. Model. 18:4325–4332

    CAS  PubMed  Google Scholar 

  44. Alkorta I, Sanchez−Sanz G, Elguero J, Del Bene JE (2013). J. Phys. Chem. A 117:183–−191

    CAS  PubMed  Google Scholar 

  45. Liu MX, Li QZ, Li WZ, Cheng JB (2016). J. Mol. Graphics Model. 65:35–42

    CAS  Google Scholar 

  46. Liu MX, Yang L, Li QZ, Li WZ, Cheng JB, Xiao B, Yu XF (2016). J. Mol. Model. 22:192

    PubMed  Google Scholar 

  47. McDowell SAC (2014). Chem. Phys. Lett. 598:1–4

    CAS  Google Scholar 

  48. Esrafili MD, Mohammadirad N, Solimannejad M (2015). Chem. Phys. Lett. 628:16–20

    CAS  Google Scholar 

  49. Solimannejad M, Orojloo M, Amani S (2015). J. Mol. Model. 21:183

    PubMed  Google Scholar 

  50. Yourdkhani S, Korona T, Hadipour NL (2015). J. Comput. Chem. 36:2412–2428

    CAS  PubMed  Google Scholar 

  51. Marín-Luna M, Alkorta I, Elguero J (2016). J. Phys. Chem. A 120:648–656

    PubMed  Google Scholar 

  52. Esrafili MD, Mohammadian-Sabet F (2016). Mol. Phys. 114:1528–1538

    CAS  Google Scholar 

  53. Rezaei Z, Solimannejad M, Esrafili MD (2015). Comput. Theor. Chem. 1074:101–106

    CAS  Google Scholar 

  54. Vatanparast M, Parvini E, Bahadori A (2016). Mol. Phys. 114:1478–1484

    CAS  Google Scholar 

  55. Li W, Zeng Y, Li X, Sun Z, Meng L (2016). Phys. Chem. Chem. Phys. 18:24672–24680

    CAS  PubMed  Google Scholar 

  56. Yang X, Zhou PP, Yang F, Zhou DG, Yan CX, Zheng PJ, Dai Y (2016). ChemistrySelect 1:1741–1750

    CAS  Google Scholar 

  57. Xu HL, Cheng JB, Yang X, Liu ZB, Bo Xiao QZL (2017). RSC Adv. 7:21713–21720

    CAS  Google Scholar 

  58. Frisch MJ et al (2010) Gaussian 09. Gaussian, Inc, Wallingford

    Google Scholar 

  59. Boys SF, Bernardi F (1970). Mol. Phys. 19:553–566

    CAS  Google Scholar 

  60. GaussView, Version 5, R. Dennington, T. Keith, J.S. Millam, Semichem Inc., Shawnee Mission KS, 2009

  61. Biegler-König F (2000) AIM2000. University of Applied Sciences, Bielefeld

    Google Scholar 

  62. Weinhold F, Landis C (2012) Discovering chemistry with natural bond orbitals. John Wiley & Sons, Inc, Hoboken

    Google Scholar 

  63. Lu T, Chen FW (2012). J. Comput. Chem. 33:580–592

    PubMed  Google Scholar 

  64. Humphrey W, Dalke A, Schulten K (1996). J. Mol. Graph. 14:33–38

    CAS  PubMed  Google Scholar 

  65. Zhuo HY, Li QZ, Li WZ, Cheng JB (2014). Phys. Chem. Chem. Phys. 16:159–165

    CAS  PubMed  Google Scholar 

  66. Schleyer P v R, Jiao HJ, Hommes NJR v E, Malkin VG, Malkina OL (1997). J. Am. Chem. Soc. 119:12669–12670

    CAS  Google Scholar 

  67. Zhang JR, Hu QZ, Li QZ, Scheiner S, Liu SF (2019). Int. J. Quantum Chem. 119:e25910

    Google Scholar 

  68. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010). J. Am. Chem. Soc. 132:6498–6506

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yishan Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yao, L. & Wang, F. Synergistic and antagonistic interplay between tetrel bond and pnicogen bond in complexes involving ring compounds. J Mol Model 25, 351 (2019). https://doi.org/10.1007/s00894-019-4206-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4206-1

Keywords

Navigation