Skip to main content
Log in

Correlation between molecular charge densities and sensitivity of nitrogen-rich heterocyclic nitroazole derivative explosives

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Nitroazole derivatives are nitrogen-rich heterocyclic ring molecules with potential application as energetic materials. Thirty-three of them—nitroimidazoles, nitrotriazoles, and nitropyrazoles—were investigated. Computed density functional theory molecular charge densities were partitioned employing the accurate distributed multipole analysis (DMA) method. Based on the magnitude of the DMA atom-centered electric multipoles (monopole, dipole, and quadrupole values), mathematical models were developed to compute the impact sensitivity of the explosives composed of these molecules. Charge localization and delocalization of the ring nitrogen atoms as well as charges of the atoms of the nitro group affect the sensitivity of explosives composed of nitroazole derivatives. The sensitivity is strongly dependent on the ring position of the nitrogen atoms and the bonding site of the substituent groups. The N/C ratio and the repulsion of the non-bonding electron pairs of the vicinal nitrogen atoms of the ring also play an important role in the stability of nitroazoles. The influence of the withdrawing group (NO2) and the electron injector groups (NH2 and CH3) including their bonding position on the ring could be quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sikder AK, Sikder N (2004) A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater 112(1–2):1–15

    CAS  PubMed  Google Scholar 

  2. Turker L (2016) Azo-bridged triazoles: green energetic materials. Def Technol 12(1):1–15

    Google Scholar 

  3. Singh RP, Ga H, Meshri DT, Shreeve JM (2007) Nitrogen-rich heterocycles. In: Klapotke TM (ed) High energy density materials. Structure and bonding, vol 125. Springer-Verlag, Berlin, pp 35–83. https://doi.org/10.1007/430_2006_055

    Chapter  Google Scholar 

  4. Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP (2008) Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 151(2–3):289–305

    CAS  Google Scholar 

  5. Zhao GZ, Jia JF, Wu HS (2016) Design and selection of triazole-based compounds with high energetic properties and stabilities. J Chem Sci 128(8):1223–1236

    CAS  Google Scholar 

  6. Turker L, Atalar T (2006) Quantum chemical study on 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) and some of its constitutional isomers. J Hazard Mater 137(3):1333–1344

    PubMed  Google Scholar 

  7. Turker L (2009) Structure-impact sensitivity relation of certain explosive compounds. J Energ Mater 27(2):94–109

    CAS  Google Scholar 

  8. Xia Y, Li W, Qu FQ, Fan ZJ, Liu XF, Berro C, Rauzy E, Peng L (2007) Synthesis of bitriazolyl nucleosides and unexpectedly different reactivity of azidotriazole nucleoside isomers in the Huisgen reaction. Org Biomol Chem 5(11):1695–1701

    CAS  PubMed  Google Scholar 

  9. Agrawal JP (2010) High energy materials - propellants, explosives and pyrotechnics. Wiley, Essex

    Google Scholar 

  10. Sivabalan R, Anniyappan M, Pawar SJ, Talawar MB, Gore GM, Venugopalan S, Gandhe BR (2006) Synthesis, characterization and thermolysis studies on triazole and tetrazole based high nitrogen content high energy materials. J Hazard Mater 137(2):672–680

    CAS  PubMed  Google Scholar 

  11. Rice BM, Hare JJ (2002) A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J Phys Chem A 106(9):1770–1783

    CAS  Google Scholar 

  12. Zeman S (2007) Sensitivities of high energy compounds. High energy density materials, vol 125. Structure and Bonding. Springer-Verlag, Berlin, pp 195–271. https://doi.org/10.1007/430_2006_052

    Chapter  Google Scholar 

  13. Mathieu D (2013) Toward a physically based quantitative modeling of impact sensitivities. J Phys Chem A 117(10):2253–2259

    CAS  PubMed  Google Scholar 

  14. Mathieu D, Alaime T (2014) Predicting impact sensitivities of nitro compounds on the basis of a semi-empirical rate constant. J Phys Chem A 118(41):9720–9726

    CAS  PubMed  Google Scholar 

  15. Mathieu D, Alaime T (2015) Impact sensitivities of energetic materials: exploring the limitations of a model based only on structural formulas. J Mol Graph 62:81–86

    CAS  Google Scholar 

  16. Kamlet MJ, Adolph HG (1979) Relationship of impact sensitivity with structure of organic high explosives: . polynitroaromatic explosives. Propellants and Explosives 4(2):30–34

    CAS  Google Scholar 

  17. Borges I (2008) Conformations and charge distributions of diazocyclopropanes. Int J Quantum Chem. 108(13):2615–2622

    CAS  Google Scholar 

  18. Anders G, Borges I (2011) Topological analysis of the molecular charge density and impact sensitivy models of energetic molecules. J Phys Chem A 115(32):9055–9068

    CAS  PubMed  Google Scholar 

  19. Giannerini T, Borges I (2015) Molecular electronic topology and fragmentation onset via charge partition methods and nuclear Fukui functions: 1,1-diamino-2,2-dinitroethylene. J Braz Chem Soc 26(5):851–859

    CAS  Google Scholar 

  20. Mathieu D (2016) Physics-based modeling of chemical hazards in a regulatory framework: comparison with quantitative structure-property relationship (QSPR) methods for impact sensitivities. Ind Eng Chem Res 55(27):7569–7577

    CAS  Google Scholar 

  21. Zhang CY, Shu YJ, Huang YG, Zhao XD, Dong HS (2005) Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. J Phys Chem B 109(18):8978–8982

    CAS  PubMed  Google Scholar 

  22. Zhang CY (2008) Investigation of the correlations between nitro group charges and some properties of nitro organic compounds. Propellants Explos Pyrotech 33(2):139–145

    Google Scholar 

  23. Zhang CY (2009) Review of the establishment of nitro group charge method and its applications. J Hazard Mater 161(1):21–28

    CAS  PubMed  Google Scholar 

  24. Murray JS, Concha MC, Politzer P (2009) Links between surface electrostatic potentials of energetic molecules, impact sensitivities and C-NO2/N-NO2 bond dissociation energies. Mol Phys 107(1):89–97

    CAS  Google Scholar 

  25. Yan QL, Zeman S (2013) Theoretical evaluation of sensitivity and thermal stability for high explosives based on quantum chemistry methods: a brief review. Int J Quantum Chem. 113(8):1049–1061

    CAS  Google Scholar 

  26. Owens FJ, Jayasuriya K, Abrahmsen L, Politzer P (1985) Computational analysis of some properties associated with the nitro groups in polynitroaromatic molecules. Chem Phys Lett 116(5):434–438

    CAS  Google Scholar 

  27. Politzer P, Murray JS (1996) Relationships between dissociation energies and electrostatic potentials of C-NO2 bonds: applications to impact sensitivities. J Mol Struct 376:419–424

    CAS  Google Scholar 

  28. Murray JS, Lane P, Politzer P (1998) Effects of strongly electron-attracting components on molecular surface electrostatic potentials: application to predicting impact sensitivities of energetic molecules. Mol Phys 93(2):187–194

    CAS  Google Scholar 

  29. Politzer P, Murray JS (2016) High performance, low sensitivity: conflicting or compatible? Propellants Explos Pyrotech 41(3):414–425

    CAS  Google Scholar 

  30. Ren FD, Cao DL, Shi WJ, Gao HF (2016) A theoretical prediction of the relationships between the impact sensitivity and electrostatic potential in strained cyclic explosive and application to H-bonded complex of nitrocyclohydrocarbon. J Mol Model 22(4):8

    PubMed  Google Scholar 

  31. Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Design and synthesis of energetic materials. Ann Rev Mater Res 31:291–321

    CAS  Google Scholar 

  32. Mathieu D (2012) Theoretical shock sensitivity index for explosives. J. Phys. Chem. A 116(7):1794–1800

    CAS  PubMed  Google Scholar 

  33. Mathieu D (2017) Sensitivity of energetic materials: theoretical relationships to detonation performance and molecular structure. Ind Eng Chem Res 56(29):8191–8201

    CAS  Google Scholar 

  34. Keshavarz MH (2010) Simple relationship for predicting impact sensitivity of nitroaromatics, nitramines, and nitroaliphatics. Propellants Explos Pyrotech 35(2):175–181

    CAS  Google Scholar 

  35. Keshavarz MH (2013) A new general correlation for predicting impact sensitivity of energetic compounds. Propellants Explos Pyrotech 38(6):754–760

    CAS  Google Scholar 

  36. Keshavarz MH, Ghaffarzadeh M, Omidkhah MR, Farhadi K (2017) New correlation between electric spark and impact sensitivities of nitramine energetic compounds for assessment of their safety. Z Anorg Allg Chem 643(19):1227–1231

    CAS  Google Scholar 

  37. Keshavarz MH, Ghaffarzadeh M, Omidkhah MR, Farhadi K (2017) Correlation between shock sensitivity of nitramine energetic compounds based on small-scale gap test and their electric spark sensitivity. Z Anorg Allg Chem 643(24):2158–2162

    CAS  Google Scholar 

  38. Keshavarz MH, Abadi YH (2018) Novel organic compounds containing nitramine groups suitable as high-energy cyclic nitramine compounds. ChemistrySelect 3(28):8238–8244

    CAS  Google Scholar 

  39. Cho SG (2011) A predictive study on molecular and explosive properties of 1-aminoimidazole derivatives. Bull Kor Chem Soc 32(7):2319–2324

    CAS  Google Scholar 

  40. Sorescu DC, Bennett CM, Thompson DL (1998) Theoretical studies of the structure, tautomerism, and vibrational spectra of 3-amino-5-nitro-1,2,4-triazole. J Phys Chem A 102(50):10348–10357

    CAS  Google Scholar 

  41. Su XF, Cheng XL, Ge SH (2009) Theoretical investigation on structure and properties of 2,4,5-trinitroimidazole and its three derivatives. Theochem-J Mol Struct 895(1–3):44–51

    CAS  Google Scholar 

  42. Su XF, Cheng XL, Meng CM, Yuan XL (2009) Quantum chemical study on nitroimidazole, polynitroimidazole and their methyl derivatives. J Hazard Mater 161(1):551–558

    CAS  PubMed  Google Scholar 

  43. Ravi P, Gore GM, Tewari SP, Sikder AK (2012) A DFT study of aminonitroimidazoles. J Mol Model 18(2):597–605

    CAS  PubMed  Google Scholar 

  44. Ravi P, Gore GM, Tewari SP, Sikder AK (2010) Quantum chemical studies on the fused nitroazoles. J Mol Struct THEOCHEM 955(1–3):171–177

    CAS  Google Scholar 

  45. Ghule VD, Sarangapani R, Jadhav PM, Tewari SP (2011) Theoretical studies on nitrogen rich energetic azoles. J Mol Model 17(6):1507–1515

    CAS  PubMed  Google Scholar 

  46. Yu Z, Bernstein ER (2013) Sensitivity and performance of azole-based energetic materials. J Phys Chem A 117(42):10889–10902

    CAS  PubMed  Google Scholar 

  47. Ravi P, Tewari SP, Ramaswamy R (2013) A DFT study on the structures and energies of isomers of 4-amino-1,3-dinitro-1,2,4-triazol-5-one-2-oxide: new high energy density compounds. Propellants, Explosives, Pyrotechnics 38(3):425–432

    CAS  Google Scholar 

  48. Moxnes JF, Frøyland Ø, Risdal T (2017) A computational study of ANTA and NTO derivatives. J Mol Model 23(8):8

    Google Scholar 

  49. Oliveira MAS, Borges I (2019) On the molecular origin of the sensitivity to impact of cyclic nitramines. Int J Quantum Chem 119(8):14

    Google Scholar 

  50. Borges I, Silva AM, Aguiar AP, Borges LEP, Santos JCA, Dias MHC (2007) Density functional theory molecular simulation of thiophene adsorption on MoS2 including microwave effects. Theochem-J Mol Struct 822(1–3):80–88

    CAS  Google Scholar 

  51. Silva AM, Borges I (2011) How to find an optimum cluster size through topological site properties: MoSx model clusters. J Comput Chem 32(10):2186–2194

    CAS  PubMed  Google Scholar 

  52. Borges I, Silva AM (2012) Probing topological electronic effects in catalysis: thiophene adsorption on NiMoS and CoMoS clusters. J Braz Chem Soc 23(10):1789–1799

    CAS  Google Scholar 

  53. Borges I, Silva AM, Modesto-Costa L (2018) Microwave effects on NiMoS and CoMoS single-sheet catalysts. J Mol Model 24(6):8

    Google Scholar 

  54. Borges I (2008) Excited electronic and ionized states of N,N-dimethylnitramine. Chem Phys 349:256–262

    CAS  Google Scholar 

  55. Borges I (2008) Excited electronic and ionized states of the nitramide molecule, H2NNO2, studied by the symmetry adapted-cluster configuration method. Theor Chem Accounts 121:239–246

    CAS  Google Scholar 

  56. Borges I, Barbatti M, Aquino AJA, Lischka H (2012) Electronic spectra of nitroethylene. International Journal of Quantum Chemistry 112: 1225-1232

    Google Scholar 

  57. Borges I (2014) Electronic and ionization spectra of 1,1-diamino-2,2-dinitroethylene, FOX-7. J Mol Model 20(3):1–7

    Google Scholar 

  58. Modesto-Costa L, Uhl E, Borges I (2015) Water solvent effects using continuum and discrete models: the nitromethane molecule, CH3NO2. J Comput Chem 36(30):2260–2269

    CAS  PubMed  Google Scholar 

  59. Spartan Pro (1999). Wavefunction, Irvine

  60. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):1133–1138

    Google Scholar 

  61. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98(2):1372–1377

    CAS  Google Scholar 

  62. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi B, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski J, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith TJ, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003). Gaussian 03, Revision C.02 edn. Gaussian, Inc., Pittsburgh

  63. Stone AJ (2005) Distributed multipole analysis: stability for large basis sets. J Chem Theory Comput 1(6):1128–1132

    CAS  PubMed  Google Scholar 

  64. Stone AJ (1981) Distributed multipole analysis, or how to describe a molecular charge-distribution. Chem Phys Lett 83(2):233–239

    CAS  Google Scholar 

  65. Price SL, Stone AJ (1983) A distributed multipole analysis of charge-densities of the azabenzene molecules. Chem Phys Lett 98(5):419–423

    CAS  Google Scholar 

  66. Stone AJ, Alderton M (1985) Distributed multipole analysis - methods and applications. Mol Phys 56(5):1047–1064

    CAS  Google Scholar 

  67. Stone AJ (2000) The theory of intermolecular forces. International Series of Monographs on Chemistry. Oxford University Press, Oxford

    Google Scholar 

  68. March J, Smith MB (2007) Advanced organic chemistry 6th edn. Wiley, New York

    Google Scholar 

  69. Pozharskii AF (1977) Concept of π-surplus character in the chemistry of heteroaromatic compounds (review). Chem Heterocycl Compd 13(6):583–598

    Google Scholar 

  70. Balaban AT, Oniciu DC, Katritzky AR (2004) Aromaticity as a cornerstone of heterocyclic chemistry. Chem Rev 104(5):2777–2812

    CAS  PubMed  Google Scholar 

  71. Schmidt NB, Lee GS, Mitchell AR, Gilardi R (2001) Synthesis and properties, of a new explosive, 4-amino-3,5-dinitro-1 H-Pyrazole(LLM-116), Lawrence Livermore National Laboratory, Lawrence Livermore National Laboratory

  72. Mathieu D (2015) Prediction of gurney parameters based on an analytic description of the expanding products. J Energ Mater 33(2):102–115

    CAS  Google Scholar 

  73. Bulusu NB (1990) Chemistry and physics of energetic materials, vol 309. 1st edn. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  74. Depaz JLG, Ciller J (1994) Structure and tautomerismo of Anta (aminonitrotriazole). Propellants Explos Pyrotech 19(1):32–41

    CAS  Google Scholar 

  75. Keshavarz MH, Jaafari M (2006) Investigation of the various structure parameters for predicting impact sensitivity of energetic molecules via artificial neural network. Propellants Explos Pyrotech 31(3):216–225

    CAS  Google Scholar 

  76. Agrawal JP, Hodgson RD (2007) Organic chemistry of explosives. 1 edn. Wiley, Essex

  77. Moyano EL, Yranzo GI, Elguero J (1998) Flash vacuum pyrolysis of pyrazoles as an alternative way to study vinylcarbenes. J Org Chem 63(23):8188–8191

    CAS  Google Scholar 

  78. da Silva G (2009) Thermal decomposition of pyrazole to vinylcarbene + N-2: a first principles/RRKM study. Chem Phys Lett 474(1–3):13–17

    Google Scholar 

  79. Larina L, Lopyrev V (2009) Nitrazole: synthesis, structure and applications. Springer Science, New York

    Google Scholar 

  80. Politzer P, Murray JS (2015) Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum heat of detonation per unit volume. J Mol Model 21(2):11

    Google Scholar 

  81. Politzer P, Murray JS, Lane P, Sjoberg P, Adolph HG (1991) Shock-sensitivity relationships for nitramines and nitroaliphatics. Chem Phys Lett 181(1):78–82

    CAS  Google Scholar 

  82. Harper LK, Shoaf AL, Bayse CA (2015) Predicting trigger bonds in explosive materials through Wiberg bond index analysis. ChemPhysChem 16(18):3886–3892

    CAS  PubMed  Google Scholar 

  83. Shoaf AL, Bayse CA (2018) Trigger bond analysis of nitroaromatic energetic materials using wiberg bond indices. J Comput Chem 39(19):1236–1248

    CAS  PubMed  Google Scholar 

  84. Itamar Borges, Adélia J. A. Aquino, Hans Lischka, (2014) A Multireference Configuration Interaction Study of the Photodynamics of Nitroethylene. The Journal of Physical Chemistry A 118 (51):12011–12020

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

We thank the Brazilian National Research Council (CNPq) through research grants 304148/2018-0 and 409447/2018-8 and the Brazilian Army for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itamar Borges Jr.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1965 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, R.S.S., Borges, I. Correlation between molecular charge densities and sensitivity of nitrogen-rich heterocyclic nitroazole derivative explosives. J Mol Model 25, 314 (2019). https://doi.org/10.1007/s00894-019-4195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4195-0

Keywords

Navigation