Aivazian DA, Stern LJ (2000) Phosphorylation of T cell receptor zeta is regulated by a lipid dependent folding transition. Nat Struct Biol 7:1023–1026
CAS
Article
Google Scholar
Berk H, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447
Article
Google Scholar
Bezbradica JS, Medzhitov R (2012) Role of ITAM signaling module in signal integration. Curr Opin Immunol 24:58–66
CAS
Article
Google Scholar
Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E (2010) Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comput 6:459–466
CAS
Article
Google Scholar
Bond PJ, Faraldo-Gómez JD (2011) Molecular mechanism of selective recruitment of Syk kinases by the membrane antigen-receptor complex. J Biol Chem 286:25872–25881
CAS
Article
Google Scholar
Bonifacino JS, Cosson P, Shah N, Klausner RD (1991) Role of potentially charged transmembrane residues in targeting proteins for retention and degradation within the endoplasmic reticulum. EMBO J 10:2783–2793
CAS
Article
Google Scholar
Brazin KN et al (2018) The T cell antigen receptor α transmembrane domain coordinates triggering through regulation of bilayer immersion and CD3 subunit associations. Immunity. 49:829–841
CAS
Article
Google Scholar
Brooks BR et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614
CAS
Article
Google Scholar
Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101
Article
Google Scholar
Call ME, Pyrdol J, Wiedmann M, Wucherpfennig KW (2002) The organizing principle in the formation of the T cell receptor-CD3 complex. Cell 111:967–979
CAS
Article
Google Scholar
Call ME, Wucherpfennig KW (2004) Molecular mechanisms for the assembly of the T cell receptor–CD3 complex. Mol Immunol 40:1295–1305
CAS
Article
Google Scholar
Call ME, Wucherpfennig KW (2005) The T cell receptor: critical role of the membrane environment in receptor assembly and function. Annu Rev Immunol 23:101–125
CAS
Article
Google Scholar
Call ME et al (2006) The structure of the zeta-zeta transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 127:355–368
CAS
Article
Google Scholar
Call ME, Wucherpfennig KW, Chou JJ (2010) The structural basis for intramembrane assembly of an activating immunoreceptor complex. Nat Immunol 11:1023–1029
CAS
Article
Google Scholar
Chen VB et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21
CAS
Article
Google Scholar
Cheng X, Im W (2012) NMR observable-based structure refinement of DAP12-NKG2C activating immunoreceptor complex in explicit membranes. Biophys J 102:L27–L29
CAS
Article
Google Scholar
Deford-Watts LM et al (2009) The cytoplasmic tail of the T cell receptor CD3 epsilon subunit contains a phospholipid-binding motif that regulates T cell functions. J Immunol 183:1055–1064
CAS
Article
Google Scholar
DeFord-Watts LM et al (2011) The CD3 ζ subunit contains a phosphoinositide-binding motif that is required for the stable accumulation of TCR-CD3 complex at the immunological synapse. J Immunol 186:6839–6847
CAS
Article
Google Scholar
de Jong DH, Periole X, Marrink SJ (2012) Dimerization of amino acid side chains: lessons from the comparison of different force fields. J Chem Theory Comput 8:1003–1014
Article
Google Scholar
Devaux PF (1991) Static and dynamic lipid asymmetry in cell membranes. Biochemistry 30:1163–1173
CAS
Article
Google Scholar
Duchardt ED, Sigalov ABD, Aivazian DD, Stern LJPD, Schwalbe HPD (2007) Structure induction of the T-cell receptor ζ-chain upon lipid binding investigated by NMR spectroscopy. ChemBioChem 8:820–827
CAS
Article
Google Scholar
Essmann U et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593
CAS
Article
Google Scholar
Feng J, Garrity D, Call ME, Moffett H, Wucherpfennig KW (2005) Convergence on a distinctive assembly mechanism by unrelated families of activating immune receptors. Immunity 22:427–438
CAS
Article
Google Scholar
Gagnon E, Schubert DA, Gordo S, Chu HH, Wucherpfennig KW (2012) Local changes in lipid environment of TCR microclusters regulate membrane binding by the CD3epsilon cytoplasmic domain. J Exp Med 209:2423–2439
CAS
Article
Google Scholar
Garrity D, Call ME, Feng J, Wucherpfennig KW (2005) The activating NKG2D receptor assembles in the membrane with two signaling dimers into a hexameric structure. Proc Natl Acad Sci U S A 102:7641–7646
CAS
Article
Google Scholar
Gil D, Schamel WW, Montoya M, Sánchez-Madrid F, Alarcón B (2002) Recruitment of Nck by CD3 epsilon reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109:901–912
CAS
Article
Google Scholar
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472
CAS
Article
Google Scholar
Hofmann K, Stoffel W (1993) TMbase—a database of membrane spanning proteins segments. Biol Chem 374:166
Google Scholar
Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38
CAS
Article
Google Scholar
Jo S, Lim JB, Klauda JB, Im W (2009) CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys J 97:50–58
CAS
Article
Google Scholar
Jones DT, Taylor WR, Thornton JM (1994) A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 33:3038–3049
CAS
Article
Google Scholar
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935
CAS
Article
Google Scholar
Jusoh SA, Helms V (2011) Helical integrity and microsolvation of transmembrane domains from Flaviviridae envelope glycoproteins. Biochim Biophys Acta 1808:1040–1049
CAS
Article
Google Scholar
Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843
CAS
Article
Google Scholar
Knoblich K et al (2015) Transmembrane complexes of DAP12 crystallized in lipid membranes provide insights into control of oligomerization in immunoreceptor assembly. Cell Rep 11:1184–1192
CAS
Article
Google Scholar
Krshnan L, Park S, Im W, Call MJ, Call ME (2016) A conserved αβ transmembrane interface forms the core of a compact T-cell receptor-CD3 structure within the membrane. Proc Natl Acad Sci U S A 113:E6649–E6658
CAS
Article
Google Scholar
Kurowski MA, Bujnicki JM (2003) GeneSilico protein structure prediction meta-server. Nucleic Acids Res 31:3305–3307
CAS
Article
Google Scholar
Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486
CAS
Article
Google Scholar
Lee MS et al (2015) A mechanical switch couples T cell receptor triggering to the cytoplasmic juxtamembrane regions of CD3ζζ. Immunity 43:227–239
CAS
Article
Google Scholar
Lopez CA, Sethi A, Goldstein B, Wilson BS, Gnanakaran S (2015) Membrane-mediated regulation of the intrinsically disordered CD3ϵ cytoplasmic tail of the TCR. Biophys J 108:2481–2491
CAS
Article
Google Scholar
Love PE, Hayes SM (2010) ITAM-mediated signaling by the T-cell antigen receptor. Cold Spring Harb Perspect Biol 2:a002485
Article
Google Scholar
MacCallum JL, Bennett WF, Tieleman DP (2007) Partitioning of amino acid side chains into lipid bilayers: results from computer simulations and comparison to experiment. J Gen Physiol 129:371–377
CAS
Article
Google Scholar
Manolios N, Letourneur F, Bonifacino JS, Klausner RD (1991) Pairwise, cooperative and inhibitory interactions describe the assembly and probable structure of the T-cell antigen receptor. EMBO J 10:1643–1651
CAS
Article
Google Scholar
Park S, Krshnan L, Call MJ, Call ME, Im W (2018) Structural conservation and effects of alterations in T cell receptor transmembrane interfaces. Biophys J 114:1030–1035
CAS
Article
Google Scholar
Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190
CAS
Article
Google Scholar
Petruk AA et al (2013) The structure of the CD3 ζζ transmembrane dimer in POPC and raft-like lipid bilayer. Biochim Biophys Acta 1828:2637–2645
CAS
Article
Google Scholar
Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815
CAS
Article
Google Scholar
Senes A, Engel DE, DeGrado WF (2004) Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr Opin Struct Biol 14:465–479
CAS
Article
Google Scholar
Sharma S, Juffer AH (2013) An atomistic model for assembly of transmembrane domain of T cell receptor complex. J Am Chem Soc 135:2188–2197
CAS
Article
Google Scholar
Sharma S, Lensink MF, Juffer AH (2014) The structure of the CD3ζζ transmembrane dimer in lipid bilayers. Biochim Biophys Acta 1838:739–746
CAS
Article
Google Scholar
Sigalov AB, Aivazian DA, Uversky VN, Stern LJ (2006) Lipid-binding activity of intrinsically unstructured cytoplasmic domains of multichain immune recognition receptor signaling subunits. Biochemistry 45:15731–15739
CAS
Article
Google Scholar
Sigalov AB, Hendricks GM (2009) Membrane binding mode of intrinsically disordered cytoplasmic domains of T cell receptor signaling subunits depends on lipid composition. Biochem Biophys Res Commun 389:388–393
CAS
Article
Google Scholar
Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Molec Biol 6:175–182
CAS
Google Scholar
Sun H, Chu H, Fu T, Shen H, Li G (2013) Theoretical elucidation of the origin for assembly of the DAP12 dimer with only one NKG2C in the lipid membrane. J Phys Chem B 117:4789–4797
CAS
Article
Google Scholar
Wei P, Zheng BK, Guo PR, Kawakami T, Luo SZ (2013) The association of polar residues in the DAP12 homodimer: TOXCAT and molecular dynamics simulation studies. Biophys J 104:1435–1444
CAS
Article
Google Scholar
Wei P, Xu L, Li CD, Sun FD, Chen L, Tan T, Luo SZ (2014) Molecular dynamic simulation of the self-assembly of DAP12-NKG2C activating immunoreceptor complex. PLoS One 9:e105560
Article
Google Scholar
Wolf MG, Hoefling M, Aponte-Santamaría C (2010) Grubmüller, H. & Groenhof, G. g _ membed: efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J Comput Chem 31:2169–2174
CAS
Article
Google Scholar
Wu W et al (2015) Lipid in T-cell receptor transmembrane signaling. Prog Biophys Mol Biol 118:130–138
CAS
Article
Google Scholar
Wucherpfennig KW, Gagnon E, Call MJ, Huseby ES, Call ME (2009) Structural biology of the T-cell receptor: insights into receptor assembly, ligand recognition, and initiation of signaling. Cold Spring Harb Perspect Biol 2:a005140
Google Scholar
Yang W et al (2017) Dynamic regulation of CD28 conformation and signaling by charged lipids and ions. Nat Struct Mol Biol 24:1081–1092
CAS
Article
Google Scholar
Xu C et al (2008) Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell 135:702–713
CAS
Article
Google Scholar
Zhang H, Cordoba SP, Dushek O, van der Merwe PA (2011) Basic residues in the T-cell receptor zeta cytoplasmic domain mediate membrane association and modulate signaling. Proc Natl Acad Sci U S A 108:19323–19328
CAS
Article
Google Scholar
Zidovetzki R, Rost B, Pecht I (1998) Role of transmembrane domains in the functions of B- and T-cell receptors. Immunol Lett 64:97–107
CAS
Article
Google Scholar
Zimmermann K et al (2017) The cytosolic domain of T-cell receptor ζ associates with membranes in a dynamic equilibrium and deeply penetrates the bilayer. J Biol Chem 292:17746–17759
CAS
Article
Google Scholar