Journal of Molecular Modeling

, 25:290 | Cite as

Electronic structure properties of transition metal dichalcogenide nanotubes: a DFT benchmark

  • Rafael de Alencar Rocha
  • Wiliam Ferreira da Cunha
  • Luiz Antonio RibeiroJr.Email author
Original Paper
Part of the following topical collections:
  1. VII Symposium on Electronic Structure and Molecular Dynamics – VII SeedMol


In this work, we conduct a benchmark study of bandgap energies and density of states of some transition metal dichalcogenide nanotubes by means of density functional theory (DFT) methodology within both CASTEP and DMol3 methodologies. We compare different chiralities and sizes as well as different levels of theory in order to provide the literature with extensive data regarding crucial electronic structure properties of MoS2, MoSe2, mOtE2, WS2, WSe2, and WTe2 nanotubes. Although the two methods were able to rescue experimental evidences, we observed DMol3 to perform better in terms of computational cost, whereas CASTEP has shown to provide an overall greater accuracy at the cost of higher expenditures. The data provided in this work is an important suggestion of which direction future works should follow in further description of these technological promising materials.

Graphical Abstract

Frontal (left) and side (right) views for the schematic represenation of a zigzag TMD nanotube.


Transition metal dichalcogenide nanotubes Electronic structure Benchmark 


Funding information

This study was financially supported by the Brazilian Research Councils CAPES and FAPDF. This research work has the support of the Brazilian Ministry of Planning, Development and Management (Grants 005/2016 DIPLA – Planning and Management Directorate, and 11/2016 SEST – State-owned Federal Companies Secretariat) and the DPGU – Brazilian Union Public Defender (Grant 066/2016). L.A.R.J. and W.F.C were financially supported by the FAPDF grants 0193.001511/2017 and 0193.001694/2017, respectively.


  1. 1.
    Golden J, McMillan M, Downs RT, Hystad G, Goldstein I, Stein HJ, Zimmerman A, Sverjensky DA, Armstrong JT, Hazen RM (2013) Earth Planet Sci Lett 366:1CrossRefGoogle Scholar
  2. 2.
    Wilson JA, Yoffe AD (1969) Adv Phys 18(73):193CrossRefGoogle Scholar
  3. 3.
    Kolobov A, Tominaga J (2016) Two-dimensional transition-metal dichalcogenides, vol. 239Google Scholar
  4. 4.
    Voevodin A, Zabinski J (2006) Wear 261(11-12):1285CrossRefGoogle Scholar
  5. 5.
    Qin F, Shi W, Ideue T, Yoshida M, Zak A, Tenne R, Kikitsu T, Inoue D, Hashizume D, Iwasa Y (2017) Nat Commun 8:14465CrossRefGoogle Scholar
  6. 6.
    Kam K, Parkinson B (1982) J Phys Chem 86(4):463CrossRefGoogle Scholar
  7. 7.
    Xiao J, Long M, Li X, Xu H, Huang H, Gao Y (2014) Sci Rep 4:4327CrossRefGoogle Scholar
  8. 8.
    Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Phys Rev Lett 105(13):136805CrossRefGoogle Scholar
  9. 9.
    Zhang Y (2014) Nat Nanotechnol 9:111CrossRefGoogle Scholar
  10. 10.
    Laurent AD, Jacquemin D (2013) Int J Quantum Chem 113(17):2019CrossRefGoogle Scholar
  11. 11.
    Jacquemin D, Wathelet V, Perpete EA, Adamo C (2009) J Chem Theory Comput 5(9):2420CrossRefGoogle Scholar
  12. 12.
    Wang ZM, Wang E, Zhiming M (2014) MoS2 : materials, physics, and devices, vol 21Google Scholar
  13. 13.
    Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MI, Refson K, Payne MC (2005) Zeitschrift fü,r Kristallographie-Crystalline Materials 220(5/6):567Google Scholar
  14. 14.
    Delley B (1990) J Chem Phys 92(1):508CrossRefGoogle Scholar
  15. 15.
    Milman V, Winkler B, White J, Pickard C, Payne M, Akhmatskaya E, Nobes R (2000) Int J Quantum Chem 77(5):895CrossRefGoogle Scholar
  16. 16.
    Delley B (1996) J Chem Phys 100(15):6107CrossRefGoogle Scholar
  17. 17.
    Matsuzawa N, Seto J, Dixon D A (1997) J Phys Chem A 101(49):9391CrossRefGoogle Scholar
  18. 18.
    Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory. Wiley, WeinheimGoogle Scholar
  19. 19.
    Jacquemin D, Perpete EA, Ciofini I, Adamo C (2008) Acc Chem Res 42(2):326CrossRefGoogle Scholar
  20. 20.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865. CrossRefGoogle Scholar
  21. 21.
    Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413CrossRefGoogle Scholar
  22. 22.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244CrossRefGoogle Scholar
  23. 23.
    Koelling D, Harmon B (1977) J Phys C Solid State Phys 10(16):3107CrossRefGoogle Scholar
  24. 24.
    Ghorbani-Asl M, Zibouche N, Wahiduzzaman M, Oliveira A F, Kuc A, Heine T (2013) Sci Rep 3:2961CrossRefGoogle Scholar
  25. 25.
    Chen KX, Wang XM, Mo DC, Lyu SS (2015) J Phys Chem C 119(47):26706CrossRefGoogle Scholar
  26. 26.
    Island JO, Kuc A, Diependaal EH, Bratschitsch R, van der Zant HS, Heine T, Castellanos-Gomez A (2016) Nanoscale 8(5):2589CrossRefGoogle Scholar
  27. 27.
    Tongay S, Zhou J, Ataca C, Lo K, Matthews TS, Li J, Grossman JC, Wu J (2012) Nano Lett 12(11):5576CrossRefGoogle Scholar
  28. 28.
    Huang Y (2015) Nat Commun 6:6298CrossRefGoogle Scholar
  29. 29.
    Lu X, Utama MIB, Lin J, Gong X, Zhang J, Zhao Y, Pantelides S T, Wang J, Dong Z, Liu Z et al (2014) Nano Lett 14(5):2419CrossRefGoogle Scholar
  30. 30.
    Tonndorf P, Schmidt R, Böttger P, Zhang X, Börner J, Liebig A, Albrecht M, Kloc C, Gordan O, Zahn DR et al (2013) Opt Express 21(4):4908CrossRefGoogle Scholar
  31. 31.
    Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang DS, Liu K, Ji J, Li J et al (2014) Nano Lett 14(6):3185CrossRefGoogle Scholar
  32. 32.
    Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan PH, Eda G (2012) ACS nano 7 (1):791CrossRefGoogle Scholar
  33. 33.
    Elias AL, Perea-Lopez N, Castro-Beltran A, Berkdemir A, Lv R, Feng S, Long AD, Hayashi T, Kim YA, Endo M et al (2013) ACS nano 7(6):5235CrossRefGoogle Scholar
  34. 34.
    Gutierrez HR, Perea-López N, Elías AL, Berkdemir A, Wang B, Lv R, López-Uríias F, Crespi VH, Terrones H, Terrones M (2012) Nano Lett 13(8):3447CrossRefGoogle Scholar
  35. 35.
    Gong Y, Ye G, Lei S, Shi G, He Y, Lin J, Zhang X, Vajtai R, Pantelides S T, Zhou W et al (2016) Adv Funct Mater 26(12):2009CrossRefGoogle Scholar
  36. 36.
    Baugher BW, Churchill HO, Yang Y, Jarillo-Herrero P (2014) Nat Nanotechnol 9(4):262CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of BrasíliaBrasíliaBrazil

Personalised recommendations