Skip to main content
Log in

Molecular mechanisms of the protein-protein interaction–regulated binding specificity of basic-region leucine zipper transcription factors

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

It is well known that the DNA-binding specificity of transcription factors (TFs) is influenced by protein-protein interactions (PPIs). However, the underlying molecular mechanisms remain largely unknown. In this work, we adopted the cAMP-response element-binding protein (CREB) of the basic leucine zipper (bZIP) TF family as a model system, and a workflow of combined bioinformatics and molecular modeling analysis of protein-DNA interaction was tested. First, the multiple sequence alignment and SDPsite method were used to find potential bZIP family binding specificity determining positions (SDPs) within the protein-protein interaction region. Second, the mutation system was analyzed using molecular dynamics simulation. Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) free energy calculations confirmed the enhancement of the binding affinity of the mutation, which was in agreement with experimental results. The root mean square fluctuation (RMSF) and hydrogen bonding changes suggested an open and close protein dimerization process after the system was mutated, which resulted in the change of the hydrogen bonding of the protein-DNA interface and a slight conformational change. We believe that this work will contribute to understanding the protein-protein interaction–regulated binding specificity of bZIP transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature 424(6945):147

    CAS  PubMed  Google Scholar 

  2. Levine M, Cattoglio C, Tjian R (2014) Looping back to leap forward: transcription enters a new era. Cell 157(1):13–25

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Klemm JD, Schreiber SL, Crabtree GR (1998) Dimerization as a regulatory mechanism in signal transduction. Annu Rev Immunol 16(1):569–592

    CAS  PubMed  Google Scholar 

  4. Jolma A, Yin Y, Nitta KR, Dave K, Popov A, Taipale M, Enge M, Kivioja T, Morgunova E, Taipale J (2015) DNA-dependent formation of transcription factor pairs alters their binding specificity. Nature 527(7578):384–388

    CAS  PubMed  Google Scholar 

  5. Slattery M, Riley T, Liu P, Abe N, Gomezalcala P, Dror I, Zhou T, Rohs R, Honig B, Bussemaker HJ (2011) Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell 147(6):1270–1282

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Amoutzias GD, Veron AS, Robinson-Rechavi M, Bornberg-Bauer E, Oliver SG, Robertson DL (2006) One billion years of bZIP transcription factor evolution: conservation and change in dimerization and DNA-binding site specificity. Mol Biol Evol 24(3):827–835

    PubMed  Google Scholar 

  7. Newman JR, Keating AE (2003) Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science 300(5628):2097–2101

    CAS  PubMed  Google Scholar 

  8. Deppmann CD, Alvania RS, Taparowsky EJ (2006) Cross-species annotation of basic leucine zipper factor interactions: insight into the evolution of closed interaction networks. Mol Biol Evol 23(8):1480–1492

    CAS  PubMed  Google Scholar 

  9. Potapov V, Kaplan JB, Keating AE (2015) Data-driven prediction and design of bZIP coiled-coil interactions. PLoS Comput Biol 11(2):e1004046

    PubMed  PubMed Central  Google Scholar 

  10. Vinson C, Acharya A, Taparowsky EJ (2006) Deciphering B-ZIP transcription factor interactions in vitro and in vivo. Biochim Biophys Acta Gene Struct Expr 1759(1–2):4–12

    CAS  Google Scholar 

  11. Montclare JK, Sloan LS, Schepartz A (2001) Electrostatic control of half-site spacing preferences by the cyclic AMP response element-binding protein CREB. Nucleic Acids Res 29(16):3311–3319

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu J, Zheng Q, Deng Y, Cheng C-S, Kallenbach NR, Lu M (2006) A seven-helix coiled coil. Proc Natl Acad Sci 103(42):15457–15462

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fujii Y, Shimizu T, Toda T, Yanagida M, Hakoshima T (2000) Structural basis for the diversity of DNA recognition by bZIP transcription factors. Nat Struct Biol 7(10):889

    CAS  PubMed  Google Scholar 

  14. Johnson PF (1993) Identification of C/EBP basic region residues involved in DNA sequence recognition and half-site spacing preference. Mol Cell Biol 13(11):6919

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim J, Tzamarias D, Ellenberger T, Harrison SC, Struhl K (1993) Adaptability at the protein-DNA interface is an important aspect of sequence recognition by bZIP proteins. Proc Natl Acad Sci 90(10):4513–4517

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kurokawa H, Motohashi H, Sueno S, Kimura M, Takagawa H, Kanno Y, Yamamoto M, Tanaka T (2009) Structural basis of alternative DNA recognition by Maf transcription factors. Mol Cell Biol 29(23):6232–6244

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Metallo SJ, Schepartz A (1994) Distribution of labor among bZIP segments in the control of DNA affinity and specificity. Chem Biol 1(3):143–151

    CAS  PubMed  Google Scholar 

  18. Suckow M, Von WB, Müllerhill B (1993) Identification of three residues in the basic regions of the bZIP proteins GCN4, C/EBP and TAF-1 that are involved in specific DNA binding. EMBO J 12(3):1193–1200

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hai T, Curran T (1991) Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci 88(9):3720–3724

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kouzarides T, Ziff E (1989) Leucine zippers of fos, jun and GCN4 dictate dimerization specificity and thereby control DNA binding. Nature 340(6234):568

    CAS  PubMed  Google Scholar 

  21. Pogenberg V, Textor LC, Vanhille L, Holton SJ, Sieweke MH, Wilmanns M (2014) Design of a bZip transcription factor with homo/heterodimer-induced DNA-binding preference. Structure 22(3):466–477

    CAS  PubMed  Google Scholar 

  22. Reinke AW, Baek J, Ashenberg O, Keating AE (2013) Networks of bZIP protein-protein interactions diversified over a billion years of evolution. Science 340(6133):730–734

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chu WY, Huang YF, Huang CC, Cheng YS, Huang CK, Oyang YJ (2009) ProteDNA: a sequence-based predictor of sequence-specific DNA-binding residues in transcription factors. Nucleic Acids Res 37(suppl_2):396–401

    Google Scholar 

  24. Donald JE, Shakhnovich EI (2005) Predicting specificity-determining residues in two large eukaryotic transcription factor families. Nucleic Acids Res 33(14):4455–4465

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ka-Chun W, Yue L, Peng C, Moses AM, Zhang Z (2015) Computational learning on specificity-determining residue-nucleotide interactions. Nucleic Acids Res 43(21):10180–10189

    Google Scholar 

  26. Merino F, Bouvier B, Cojocaru V (2015) Cooperative DNA recognition modulated by an interplay between protein-protein interactions and DNA-mediated allostery. PLoS Comput Biol 11(6):e1004287

    PubMed  PubMed Central  Google Scholar 

  27. Pan Y, Nussinov R (2011) The role of response elements organization in transcription factor selectivity: the IFN-β enhanceosome example. PLoS Comput Biol 7(6):e1002077

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chakraborty A, Chakrabarti S (2014) A survey on prediction of specificity-determining sites in proteins. Brief Bioinform 16(1):71–88

    PubMed  Google Scholar 

  29. De JD, Pazos F, Valencia A (2013) Emerging methods in protein co-evolution. Nat Rev Genet 14(4):249

    Google Scholar 

  30. Kalinina OV, Gelfand MS, Russell RB (2009) Combining specificity determining and conserved residues improves functional site prediction. BMC Bioinf 10(1):174

    Google Scholar 

  31. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Viktor H, Robert A, Asim O, Bentley S, Adrian R, Carlos S (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinf 65(3):712–725

    Google Scholar 

  34. Temiz NA, Donohue DE, Bacolla A, Luke BT, Collins JR (2012) The role of methylation in the intrinsic dynamics of B- and Z-DNA. PLoS One 7(4):e35558

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Steinmann C, Olsson MA, Ryde U (2018) Relative ligand-binding free energies calculated from multiple short QM/MM MD simulations. J Chem Theory Comput 14(6):3228–3237

    CAS  PubMed  Google Scholar 

  36. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discovery 10(5):449–461

    CAS  Google Scholar 

  37. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51(1):69–82

    CAS  PubMed  Google Scholar 

  38. Iii BRM, Jr MG, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8(9):3314–3321

    Google Scholar 

  39. Humphrey WF, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    CAS  PubMed  Google Scholar 

  40. Bie L, Du L, Yuan Q, Gao J (2018) How a single 5-methylation of cytosine regulates the recognition of C/EBPβ transcription factor: a molecular dynamic simulation study. J Mol Model 24(7):159

    PubMed  Google Scholar 

  41. Sun H, Li Y, Shen M, Tian S, Xu L, Pan P, Guan Y, Hou T (2014) Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys Chem Chem Phys 16(40):22035–22045

    CAS  PubMed  Google Scholar 

  42. Wu GZ, Asai S, Sumita M, Yui H (2002) Entropy penalty-induced self-assembly in carbon black or carbon fiber filled polymer blends. Macromolecules 35(3):945–951

    CAS  Google Scholar 

  43. Slattery M, Zhou T, Yang L, Dantas Machado AC, Gordan R, Rohs R (2014) Absence of a simple code: how transcription factors read the genome. Trends Biochem Sci 39(9):381–399

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen J, Zhang Z, Li L, Chen BC, Revyakin A, Hajj B, Legant W, Dahan M, Lionnet T, Betzig E, Tjian R, Liu Z (2014) Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156(6):1274–1285

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Shimamoto N (1999) One-dimensional diffusion of proteins along DNA. J Biol Chem 274(22):15293–15296

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (Grant No. 2017YFB0203405), National Natural Science Foundation of China (Nos. 21873034, 31670779), Fundamental Research for the Central Universities (Project 2662018JC027), and Huazhong Agricultural University Scientific & Technological Self Innovation Foundation (Program No. 2015RC008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Gao or Hong-Yu Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Xiong, L., Gao, J. et al. Molecular mechanisms of the protein-protein interaction–regulated binding specificity of basic-region leucine zipper transcription factors. J Mol Model 25, 246 (2019). https://doi.org/10.1007/s00894-019-4138-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4138-9

Keywords

Navigation